Power Series
The generating function of the Fibonacci sequence is the power series
This series has a simple and interesting closed-form solution for :
This solution can be proven by using the Fibonacci recurrence to expand each coefficient in the infinite sum defining :
Solving the equation for results in the closed form solution.
In particular, math puzzle-books note the curious value, or more generally
for all integers .
More generally,
Read more about this topic: Fibonacci Numbers
Famous quotes containing the words power and/or series:
“Perfect happiness I believe was never intended by the deity to be the lot of any one of his creatures in this world; but that he has very much put in our power the nearness of our approaches to it, is what I steadfastly believe.”
—Thomas Jefferson (17431826)
“I thought I never wanted to be a father. A child seemed to be a series of limitations and responsibilities that offered no reward. But when I experienced the perfection of fatherhood, the rest of the world remade itself before my eyes.”
—Kent Nerburn (20th century)