Faster-than-light - FTL Travel of Non-information - Quantum Mechanics

Quantum Mechanics

Certain phenomena in quantum mechanics, such as quantum entanglement, appear to transmit information faster than light. According to the no-communication theorem these phenomena do not allow true communication; they only let two observers in different locations see the same event simultaneously, without any way of controlling what either sees. Wavefunction collapse can be viewed as an epiphenomenon of quantum decoherence, which in turn is nothing more than an effect of the underlying local time evolution of the wavefunction of a system and all of its environment. Since the underlying behaviour doesn't violate local causality or allow FTL it follows that neither does the additional effect of wavefunction collapse, whether real or apparent.

The uncertainty principle implies that individual photons may travel for short distances at speeds somewhat faster (or slower) than c, even in a vacuum; this possibility must be taken into account when enumerating Feynman diagrams for a particle interaction. It has since been proven that not even a single photon may travel faster than c. In quantum mechanics, virtual particles may travel faster than light, and this phenomenon is related to the fact that static field effects (which are mediated by virtual particles in quantum terms) may travel faster than light (see section on static fields above). However, macroscopically these fluctuations average out, so that photons do travel in straight lines over long (i.e., non-quantum) distances, and they do travel at the speed of light on average. Therefore, this does not imply the possibility of superluminal information transmission.

There have been various reports in the popular press of experiments on faster-than-light transmission in optics—most often in the context of a kind of quantum tunnelling phenomenon. Usually, such reports deal with a phase velocity or group velocity faster than the vacuum velocity of light. However, as stated above, a superluminal phase velocity cannot be used for faster-than-light transmission of information. There has sometimes been confusion concerning the latter point. Additionally a channel that permits such propagation cannot be laid out faster than the speed of light.

Quantum teleportation transmits quantum information at whatever speed is used to transmit the same amount of classical information, likely the speed of light. This quantum information may theoretically be used in ways that classical information can not, such as in quantum computations involving quantum information only available to the recipient.

Read more about this topic:  Faster-than-light, FTL Travel of Non-information

Famous quotes containing the words quantum and/or mechanics:

    But how is one to make a scientist understand that there is something unalterably deranged about differential calculus, quantum theory, or the obscene and so inanely liturgical ordeals of the precession of the equinoxes.
    Antonin Artaud (1896–1948)

    It is only the impossible that is possible for God. He has given over the possible to the mechanics of matter and the autonomy of his creatures.
    Simone Weil (1909–1943)