Formal Definition
In convex geometry, a face of a polytope P is the intersection of any supporting hyperplane of P and P. From this definition it follows that the set of faces of a polytope includes the polytope itself and the empty set. For example, a polyhedron R3 is entirely on one hyperplane of R4. If R4 were spacetime, the hyperplane at t = 0 supports and contains the entire polyhedron. Thus, by the formal definition, the polyhedron is a face of itself.
All of the following are the n-faces of a 4-dimensional polytope:
- 4-face – the 4-dimensional 4-polytope itself
- 3-face – any 3-dimensional cell
- 2-face – any 2-dimensional polygonal face (using the common definition of face)
- 1-face – any 1-dimensional edge
- 0-face – any 0-dimensional vertex
- the empty set.
Read more about this topic: Face (geometry)
Famous quotes containing the words formal and/or definition:
“It is in the nature of allegory, as opposed to symbolism, to beg the question of absolute reality. The allegorist avails himself of a formal correspondence between ideas and things, both of which he assumes as given; he need not inquire whether either sphere is real or whether, in the final analysis, reality consists in their interaction.”
—Charles, Jr. Feidelson, U.S. educator, critic. Symbolism and American Literature, ch. 1, University of Chicago Press (1953)
“Beauty, like all other qualities presented to human experience, is relative; and the definition of it becomes unmeaning and useless in proportion to its abstractness. To define beauty not in the most abstract, but in the most concrete terms possible, not to find a universal formula for it, but the formula which expresses most adequately this or that special manifestation of it, is the aim of the true student of aesthetics.”
—Walter Pater (18391894)