Extreme Ultraviolet Lithography - EUV Exposure of Photoresist

EUV Exposure of Photoresist

When an EUV photon is absorbed, photoelectrons and secondary electrons are generated by ionization, much like what happens when X-rays or electron beams are absorbed by matter. It has been estimated that about 4 secondary electrons on average are generated for every EUV photon, although the generation volume is not definite. These secondary electrons have energies of a few to tens of eV and travel tens of nanometers inside photoresist (see below) before initiating the desired chemical reaction. This is very similar to the photoelectron migration for the latent image formation in silver halide photographic films. A contributing factor for this rather large distance is the fact that polymers have significant amounts of free volume. In a recent actual EUV print test, it was found 30 nm spaces could not be resolved, even though the optical resolution and the photoresist composition were not the limiting factor.

In particular, for photoresists utilizing chemical amplification for higher throughput:

e- + acid generator -> anion -> dissociated anion products

This reaction, also known as "electron attachment" or "dissociative electron attachment" is most likely to occur after the electron has essentially slowed to a halt, since it is easiest to capture at that point. The cross-section for electron attachment is inversely proportional to electron energy at high energies, but approaches a maximum limiting value at zero energy. On the other hand, it is already known that the mean free path at the lowest energies (few to several eV or less, where dissociative attachment is significant) is well over 10 nm, thus limiting the ability to consistently achieve resolution at this scale. In addition, electrons with energies < 20 eV are capable of desorbing hydrogen and fluorine anions from the resist, leading to potential damage to the EUV optical system.

EUV photoresist images often require resist thicknesses roughly equal to the pitch. This is not only due to EUV absorption causing less light to reach the bottom of the resist but also to forward scattering from the secondary electrons (similar to low-energy electron beam lithography). Conversely, thinner resist transmits a larger fraction of incident light allowing damage to underlying films, yet requires more dosage to achieve the same level of absorption.

Since the photon absorption depth exceeds the electron escape depth, as the released electrons eventually slow down, they dissipate their energy ultimately as heat.

An EUV dose of 1 mJ/cm2 generates an equivalent photoelectron dose of 10.9 μC/cm2. Current demonstration doses exceed 10 mJ/cm2, or equivalently, 109 μC/cm2 photoelectron dose.

The use of higher doses and/or reduced resist thicknesses to produce smaller features only results in increased irradiation of the layer underneath the photoresist. This adds another significant source of photoelectrons and secondary electrons which effectively reduce the image contrast. In addition, there is increased possibility of ionizing radiation damage to the layers below.

The extent of secondary electron and photoelectrons in blurring the resolution is dependent on factors such as dose, surface contamination, temperature, etc.

Read more about this topic:  Extreme Ultraviolet Lithography