Extended Kalman Filter - Continuous-time Extended Kalman Filter

Continuous-time Extended Kalman Filter

Model


\begin{align}
\dot{\mathbf{x}}(t) &= f\bigl(\mathbf{x}(t), \mathbf{u}(t)\bigr) + \mathbf{w}(t), &\mathbf{w}(t) &\sim N\bigl(\mathbf{0},\mathbf{Q}(t)\bigr) \\
\mathbf{z}(t) &= h\bigl(\mathbf{x}(t)\bigr) + \mathbf{v}(t), &\mathbf{v}(t) &\sim N\bigl(\mathbf{0},\mathbf{R}(t)\bigr)
\end{align}

Initialize


\hat{\mathbf{x}}(t_0)=E\bigl \text{, } \mathbf{P}(t_0)=Var\bigl

Predict-Update


\begin{align}
\dot{\hat{\mathbf{x}}}(t) &= f\bigl(\hat{\mathbf{x}}(t),\mathbf{u}(t)\bigr)+\mathbf{K}(t)\Bigl(\mathbf{z}(t)-h\bigl(\hat{\mathbf{x}}(t)\bigr)\Bigr)\\
\dot{\mathbf{P}}(t) &= \mathbf{F}(t)\mathbf{P}(t)+\mathbf{P}(t)\mathbf{F}(t)^{\top}-\mathbf{K}(t)\mathbf{H}(t)\mathbf{P}(t)+\mathbf{Q}(t)\\
\mathbf{K}(t) &= \mathbf{P}(t)\mathbf{H}(t)^{\top}\mathbf{R}(t)^{-1}\\
\mathbf{F}(t) &= \left . \frac{\partial f}{\partial \mathbf{x} } \right \vert _{\hat{\mathbf{x}}(t),\mathbf{u}(t)}\\
\mathbf{H}(t) &= \left . \frac{\partial h}{\partial \mathbf{x} } \right \vert _{\hat{\mathbf{x}}(t)}
\end{align}

Unlike discrete-time extended Kalman filter, the prediction and update steps are coupled in continuous-time extended Kalman filter.

Read more about this topic:  Extended Kalman Filter

Famous quotes containing the word extended:

    The civility which money will purchase, is rarely extended to those who have none.
    Charles Dickens (1812–1870)