Maximum-likelihood Estimation For The Multivariate Normal Distribution
A random vector X ∈ Rp (a p×1 "column vector") has a multivariate normal distribution with a nonsingular covariance matrix Σ precisely if Σ ∈ Rp × p is a positive-definite matrix and the probability density function of X is
where μ ∈ Rp×1 is the expected value of X. The covariance matrix Σ is the multidimensional analog of what in one dimension would be the variance, and normalizes the density so that it integrates to 1.
Suppose now that X1, ..., Xn are independent and identically distributed samples from the distribution above. Based on the observed values x1, ..., xn of this sample, we wish to estimate Σ.
Read more about this topic: Estimation Of Covariance Matrices
Famous quotes containing the words estimation, normal and/or distribution:
“A higher class, in the estimation and love of this city- building, market-going race of mankind, are the poets, who, from the intellectual kingdom, feed the thought and imagination with ideas and pictures which raise men out of the world of corn and money, and console them for the short-comings of the day, and the meanness of labor and traffic.”
—Ralph Waldo Emerson (18031882)
“You have promise, Mlle. Dubois, but you must choose between an operatic career and what is usually called a normal life. Though why it is so called is beyond me.”
—Eric Taylor, Leroux, and Arthur Lubin. M. Villeneuve (Frank Puglia)
“My topic for Army reunions ... this summer: How to prepare for war in time of peace. Not by fortifications, by navies, or by standing armies. But by policies which will add to the happiness and the comfort of all our people and which will tend to the distribution of intelligence [and] wealth equally among all. Our strength is a contented and intelligent community.”
—Rutherford Birchard Hayes (18221893)