Estimation of Covariance Matrices - Maximum-likelihood Estimation For The Multivariate Normal Distribution

Maximum-likelihood Estimation For The Multivariate Normal Distribution

A random vector XRp (a p×1 "column vector") has a multivariate normal distribution with a nonsingular covariance matrix Σ precisely if Σ ∈ Rp × p is a positive-definite matrix and the probability density function of X is

where μRp×1 is the expected value of X. The covariance matrix Σ is the multidimensional analog of what in one dimension would be the variance, and normalizes the density so that it integrates to 1.

Suppose now that X1, ..., Xn are independent and identically distributed samples from the distribution above. Based on the observed values x1, ..., xn of this sample, we wish to estimate Σ.

Read more about this topic:  Estimation Of Covariance Matrices

Famous quotes containing the words estimation, normal and/or distribution:

    No man ever stood lower in my estimation for having a patch in his clothes; yet I am sure that there is greater anxiety, commonly, to have fashionable, or at least clean and unpatched clothes, than to have a sound conscience.
    Henry David Thoreau (1817–1862)

    Normality highly values its normal man. It educates children to lose themselves and to become absurd, and thus to be normal. Normal men have killed perhaps 100,000,000 of their fellow normal men in the last fifty years.
    —R.D. (Ronald David)

    The man who pretends that the distribution of income in this country reflects the distribution of ability or character is an ignoramus. The man who says that it could by any possible political device be made to do so is an unpractical visionary. But the man who says that it ought to do so is something worse than an ignoramous and more disastrous than a visionary: he is, in the profoundest Scriptural sense of the word, a fool.
    George Bernard Shaw (1856–1950)