Maximum-likelihood Estimation For The Multivariate Normal Distribution
A random vector X ∈ Rp (a p×1 "column vector") has a multivariate normal distribution with a nonsingular covariance matrix Σ precisely if Σ ∈ Rp × p is a positive-definite matrix and the probability density function of X is
where μ ∈ Rp×1 is the expected value of X. The covariance matrix Σ is the multidimensional analog of what in one dimension would be the variance, and normalizes the density so that it integrates to 1.
Suppose now that X1, ..., Xn are independent and identically distributed samples from the distribution above. Based on the observed values x1, ..., xn of this sample, we wish to estimate Σ.
Read more about this topic: Estimation Of Covariance Matrices
Famous quotes containing the words estimation, normal and/or distribution:
“... it would be impossible for women to stand in higher estimation than they do here. The deference that is paid to them at all times and in all places has often occasioned me as much surprise as pleasure.”
—Frances Wright (17951852)
“The word career is a divisive word. Its a word that divides the normal life from business or professional life.”
—Grace Paley (b. 1922)
“My topic for Army reunions ... this summer: How to prepare for war in time of peace. Not by fortifications, by navies, or by standing armies. But by policies which will add to the happiness and the comfort of all our people and which will tend to the distribution of intelligence [and] wealth equally among all. Our strength is a contented and intelligent community.”
—Rutherford Birchard Hayes (18221893)