Equivalence Relation - Well-definedness Under An Equivalence Relation

Well-definedness Under An Equivalence Relation

If ~ is an equivalence relation on X, and P(x) is a property of elements of X, such that whenever x ~ y, P(x) is true if P(y) is true, then the property P is said to be well-defined or a class invariant under the relation ~.

A frequent particular case occurs when f is a function from X to another set Y; if x1 ~ x2 implies f(x1) = f(x2) then f is said to be a morphism for ~, a class invariant under ~, or simply invariant under ~. This occurs, e.g. in the character theory of finite groups. The latter case with the function f can be expressed by a commutative triangle. See also invariant. Some authors use "compatible with ~" or just "respects ~" instead of "invariant under ~".

More generally, a function may map equivalent arguments (under an equivalence relation ~A) to equivalent values (under an equivalence relation ~B). Such a function is known as a morphism from ~A to ~B.

Read more about this topic:  Equivalence Relation

Famous quotes containing the word relation:

    We must get back into relation, vivid and nourishing relation to the cosmos and the universe. The way is through daily ritual, and is an affair of the individual and the household, a ritual of dawn and noon and sunset, the ritual of the kindling fire and pouring water, the ritual of the first breath, and the last.
    —D.H. (David Herbert)