Energy Storage - Modern Era Developments

Modern Era Developments

Storing energy allows humans to balance the supply and demand of energy. Energy storage systems in commercial use today can be broadly categorized as mechanical, electrical, chemical, biological and thermal.

Energy storage became a dominant factor in economic development with the widespread introduction of electricity and refined chemical fuels, such as gasoline, kerosene and natural gas in the late 19th century. Unlike other common energy storage in prior use such as wood or coal, electricity must be used as it is being generated, or converted immediately into another form of energy such as potential, kinetic or chemical. Until recently electrical energy has not been converted and stored on a major scale, however new efforts to that effect began in the 21st century.

Even renewable energy must be stored in order to make it reliable. Wind blows intermittently and so some form of storage is required to compensate for calm periods. Solar energy is equally not available on cloudy days and during the nighttime, so stored energy must be available to compensate for the loss of sunlight.

An early solution to the problem of storing energy for electrical purposes was the development of the battery as an electrochemical storage device. Batteries have previously been of limited use in electric power systems due to their relatively small capacity and high cost. However, since about the middle of the first decade of the 21st century, newer battery technologies have been developed that can now provide significant utility scale load-leveling capabilities. A similar possible solution to deal with the intermittency issue of solar and wind energy is found in the capacitor.

In the 1980s, a number of manufacturers carefully researched thermal energy storage (TES) to meet the growing demand for air conditioning during peak hours. Today, several companies manufacture TES systems. The most popular form of thermal energy storage for cooling is ice storage, since it can store more energy in less space than water storage and it is also less costly than energy recovered via fuel cells or flywheels. Thermal storage has cost-effectively shifted gigawatts of power away from daytime peak usage periods, and in 2009 was used in over 3,300 buildings in over 35 countries. It works by creating ice at night when electricity is usually less costly, and then using the ice to cool the air in buildings during the hotter daytime periods.

Chemical fuels have become the dominant form of energy storage, both in electrical generation and energy transportation. Chemical fuels in common use are processed coal, gasoline, diesel fuel, natural gas, liquefied petroleum gas (LPG), propane, butane, ethanol and biodiesel. All of these materials are readily converted to mechanical energy and then to electrical energy using heat engines (via turbines or other internal combustion engines, or boilers or other external combustion engines) used for electrical power generation. Heat-engine-powered generators are nearly universal, ranging from small engines producing only a few kilowatts to utility-scale generators with ratings up to 800 megawatts. A key disadvantage to hydrocarbon fuels are their significant emissions of greenhouse gases that contribute to global warming, as well as other significant pollutants emitted by the dirtier fuel sources such as coal and gasoline.

Some areas of the world such as Washington and Oregon in the United States, and Wales in the United Kingdom, have used geographic features to store large quantities of water in elevated reservoirs, using excess electricity at times of low demand to pump water up to the reservoirs, then letting the water pass through turbine generators to retrieve the energy when electrical demands peak.

Liquid hydrocarbon fuels are the most commonly used forms of energy storage for use in transportation, but because the byproducts of the reaction that utilizes these liquid fuels' energy (combustion) produce greenhouse gases other energy carriers like hydrogen can be used to avoid production of greenhouse gases.

Read more about this topic:  Energy Storage

Famous quotes containing the words modern, era and/or developments:

    In the deeper layers of the modern consciousness ... every attempt to succeed is an act of aggression, leaving one alone and guilty and defenseless among enemies: one is punished for success. This is our intolerable dilemma: that failure is a kind of death and success is evil and dangerous, is—ultimately—impossible.
    Robert Warshow (1917–1955)

    The fantasies inspired by TB in the last century, by cancer now, are responses to a disease thought to be intractable and capricious—that is, a disease not understood—in an era in which medicine’s central premise is that all diseases can be cured.
    Susan Sontag (b. 1933)

    I don’t wanna live in a city where the only cultural advantage is that you can make a right turn on a red light.
    Freedom from labor itself is not new; it once belonged among the most firmly established privileges of the few. In this instance, it seems as though scientific progress and technical developments had been only taken advantage of to achieve something about which all former ages dreamed but which none had been able to realize.
    Hannah Arendt (1906–1975)