Description
Let A be an abelian group and f and g be two group homomorphisms from A into itself. Then the functions may be added pointwise to produce a group homomorphism. Under this operation End(A) is an Abelian group. With the additional operation of function composition, End(A) is a ring with multiplicative identity. The multiplicative identity is the identity function on A.
If the set A does not form an Abelian group, then the above construction does not result in the set of endomorphisms being an additive group, as the sum of two homomorphisms need not be a homomorphism in that case. This set of endomorphisms is a canonical example of a near-ring which is not a ring.
Read more about this topic: Endomorphism Ring
Famous quotes containing the word description:
“Once a child has demonstrated his capacity for independent functioning in any area, his lapses into dependent behavior, even though temporary, make the mother feel that she is being taken advantage of....What only yesterday was a description of the childs stage in life has become an indictment, a judgment.”
—Elaine Heffner (20th century)
“He hath achieved a maid
That paragons description and wild fame;
One that excels the quirks of blazoning pens.”
—William Shakespeare (15641616)
“God damnit, why must all those journalists be such sticklers for detail? Why, theyd hold you to an accurate description of the first time you ever made love, expecting you to remember the color of the room and the shape of the windows.”
—Lyndon Baines Johnson (19081973)