Description
Let A be an abelian group and f and g be two group homomorphisms from A into itself. Then the functions may be added pointwise to produce a group homomorphism. Under this operation End(A) is an Abelian group. With the additional operation of function composition, End(A) is a ring with multiplicative identity. The multiplicative identity is the identity function on A.
If the set A does not form an Abelian group, then the above construction does not result in the set of endomorphisms being an additive group, as the sum of two homomorphisms need not be a homomorphism in that case. This set of endomorphisms is a canonical example of a near-ring which is not a ring.
Read more about this topic: Endomorphism Ring
Famous quotes containing the word description:
“The type of fig leaf which each culture employs to cover its social taboos offers a twofold description of its morality. It reveals that certain unacknowledged behavior exists and it suggests the form that such behavior takes.”
—Freda Adler (b. 1934)
“Why does philosophy use concepts and why does faith use symbols if both try to express the same ultimate? The answer, of course, is that the relation to the ultimate is not the same in each case. The philosophical relation is in principle a detached description of the basic structure in which the ultimate manifests itself. The relation of faith is in principle an involved expression of concern about the meaning of the ultimate for the faithful.”
—Paul Tillich (18861965)
“I was here first introduced to Joe.... He was a good-looking Indian, twenty-four years old, apparently of unmixed blood, short and stout, with a broad face and reddish complexion, and eyes, methinks, narrower and more turned up at the outer corners than ours, answering to the description of his race. Besides his underclothing, he wore a red flannel shirt, woolen pants, and a black Kossuth hat, the ordinary dress of the lumberman, and, to a considerable extent, of the Penobscot Indian.”
—Henry David Thoreau (18171862)