Elliptical Polarization - Mathematical Description of Elliptical Polarization

Mathematical Description of Elliptical Polarization

The classical sinusoidal plane wave solution of the electromagnetic wave equation for the electric and magnetic fields is (cgs units)

for the magnetic field, where k is the wavenumber,

is the angular frequency of the wave, and is the speed of light.

Here is the amplitude of the field and

is the Jones vector in the x-y plane. The axes of the ellipse have lengths and . If and are equal the wave is linearly polarized. If they differ by the wave is circularly polarized.

Read more about this topic:  Elliptical Polarization

Famous quotes containing the words mathematical and/or description:

    It is by a mathematical point only that we are wise, as the sailor or the fugitive slave keeps the polestar in his eye; but that is sufficient guidance for all our life. We may not arrive at our port within a calculable period, but we would preserve the true course.
    Henry David Thoreau (1817–1862)

    Everything to which we concede existence is a posit from the standpoint of a description of the theory-building process, and simultaneously real from the standpoint of the theory that is being built. Nor let us look down on the standpoint of the theory as make-believe; for we can never do better than occupy the standpoint of some theory or other, the best we can muster at the time.
    Willard Van Orman Quine (b. 1908)