Elementary Divisors

In algebra, the elementary divisors of a module over a principal ideal domain (PID) occur in one form of the structure theorem for finitely generated modules over a principal ideal domain.

If is a PID and a finitely generated -module, then M is isomorphic to a unique sum of the form

where and the are primary ideals.

The ideals are unique (up to order); the elements are unique up to associatedness, and are called the elementary divisors. Note that in a PID, primary ideals are powers of primes, so the elementary divisors . The nonnegative integer is called the free rank or Betti number of the module .

The elementary divisors of a matrix over a PID occur in the Smith normal form and provide a means of computing the structure of a module from a set of generators and relations.

Famous quotes containing the word elementary:

    When the Devil quotes Scriptures, it’s not, really, to deceive, but simply that the masses are so ignorant of theology that somebody has to teach them the elementary texts before he can seduce them.
    Paul Goodman (1911–1972)