**Relation Between Solvability and Multiplicity**

Given any system of linear equations, there is a relation between multiplicity and solvability.

If one equation is a multiple of the other (or, more generally, a sum of multiples of the other equations), then the system of linear equations is undetermined, meaning that the system has infinitely many solutions. Example:

has solutions for such as (1, 1), (0, 2), (1.8, 0.2), (4, −2), (−3000.75, 3002.75), and so on.

When the multiplicity is only partial (meaning that for example, only the left hand sides of the equations are multiples, while the right hand sides are not or not by the *same* number) then the system is unsolvable. For example, in

the second equation yields that which is in contradiction with the first equation. Such a system is also called *inconsistent* in the language of linear algebra. When trying to solve a system of linear equations it is generally a good idea to check if one equation is a multiple of the other. If this is precisely so, the solution cannot be uniquely determined. If this is only partially so, the solution does not exist.

This, however, does not mean that the equations must be multiples of each other to have a solution, as shown in the sections above; in other words: multiplicity in a system of linear equations is **not** a necessary condition for solvability.

Read more about this topic: Elementary Algebra, Solving Algebraic Equations

### Famous quotes containing the words relation between, multiplicity and/or relation:

“There is a certain standard of grace and beauty which consists in a certain *relation between* our nature, such as it is, weak or strong, and the thing which pleases us. Whatever is formed according to this standard pleases us, be it house, song, discourse, verse, prose, woman, birds, rivers, trees, room, dress, and so on. Whatever is not made according to this standard displeases those who have good taste.”

—Blaise Pascal (1623–1662)

“Is a Bill of Rights a security for [religious liberty]? If there were but one sect in America, a Bill of Rights would be a small protection for liberty.... Freedom derives from a *multiplicity* of sects, which pervade America, and which is the best and only security for religious liberty in any society. For where there is such a variety of sects, there cannot be a majority of any one sect to oppress and persecute the rest.”

—James Madison (1751–1836)

“A theory of the middle class: that it is not to be determined by its financial situation but rather by its *relation* to government. That is, one could shade down from an actual ruling or governing class to a class hopelessly out of *relation* to government, thinking of gov’t as beyond its control, of itself as wholly controlled by gov’t. Somewhere in between and in gradations is the group that has the sense that gov’t exists for it, and shapes its consciousness accordingly.”

—Lionel Trilling (1905–1975)