The elastica theory is a theory of mechanics of solid materials developed by Leonhard Euler that allows for very large scale elastic deflections of structures. Euler (1744) and Jakob Bernoulli developed the theory for elastic lines (yielding the solution known as the elastica curve) and studied buckling. Certain situations can be solved exactly by elliptic functions. Later elastica theory was generalized by F. and E. Cosserat into a geometric theory with intrinsic directions at each point (1907).
Elastica theory is an example of bifurcation theory. For most boundary conditions several solutions exist simultaneously.
When small deflections of a structure are to be analyzed, elastica theory is not required and an approximate solution may be found using the simpler linear elasticity theory or (for 1-dimensional components) beam theory.
Famous quotes containing the word theory:
“Everything to which we concede existence is a posit from the standpoint of a description of the theory-building process, and simultaneously real from the standpoint of the theory that is being built. Nor let us look down on the standpoint of the theory as make-believe; for we can never do better than occupy the standpoint of some theory or other, the best we can muster at the time.”
—Willard Van Orman Quine (b. 1908)