E-UTRA - Physical Layer (L1) Design

Physical Layer (L1) Design

E-UTRA uses orthogonal frequency-division multiplexing (OFDM), multiple-input multiple-output (MIMO) antenna technology depending on the terminal category and can use as well beamforming for the downlink to support more users, higher data rates and lower processing power required on each handset.

In the uplink LTE uses both OFDMA and a precoded version of OFDM called Single Carrier Frequency Division Multiple Access (SC-FDMA) depending on the channel. This is to compensate for a drawback with normal OFDM, which has a very high peak-to-average power ratio (PAPR). High PAPR requires more expensive and inefficient power amplifiers with high requirements on linearity, which increases the cost of the terminal and drains the battery faster. For the uplink, in release 8 and 9 multi user MIMO / Spatial division multiple access (SDMA) is supported; release 10 introduces also SU-MIMO.

In both OFDM and SCFDMA transmission modes a cyclic prefix is appended to the transmitted symbols. Two different lengths of the cyclic prefix are available to support different channel spreads due to the cell size and propagation environment. These are a normal cyclic prefix of 4.7µs, and a extended cyclic prefix of 16.6µs.

LTE supports both Frequency-division duplex (FDD) and Time-division duplex (TDD) modes. While FDD makes use of paired spectra for UL and DL transmission separated by a duplex frequency gap, TDD uses the same frequency carrier to, alternatively in time, transmit data from the base station to the terminal and viceversa. Both modes have their own frame structure within LTE and these are aligned with each other meaning that similar hardware can be used in the base stations and terminals to allow for economy of scale. The TDD mode in LTE is aligned with TD-SCDMA as well allowing for coexistence.

The LTE transmission is structured in the time domain in radio frames. Each of these radio frames is 10 ms long and consists of 10 sub frames of 1 ms each. For non-MBMS subframes the OFDM subcarrier spacing in the frequency domain is 15 kHz. Twelve of these subcarriers together are called a resource block. A LTE terminal can be allocated in the downlink or uplink a minimum of 1 resource block during 1 subframe.

All L1 transport data is encoded using turbo coding and a contention-free quadratic permutation polynomial (QPP) turbo code internal interleaver. L1 HARQ with 8 (FDD) or up to 15 (TDD) processes is used for the downlink and up to 8 processes for the UL

Read more about this topic:  E-UTRA

Famous quotes containing the words physical, layer and/or design:

    I was always a feminist, for I liked intellectual revolt as much as I disliked physical violence. On the whole, I think women have lost something precious, but have gained, immeasurably, by the passing of the old order.
    Ellen Glasgow (1873–1945)

    The writer in me can look as far as an African-American woman and stop. Often that writer looks through the African-American woman. Race is a layer of being, but not a culmination.
    Thylias Moss, African American poet. As quoted in the Wall Street Journal (May 12, 1994)

    Joe ... you remember I said you wouldn’t be cheated?... Nobody is really. Eventually all things work out. There’s a design in everything.
    Sidney Buchman (1902–1975)