Measure Theoretical Definition
- See main article measure-preserving dynamical system.
A dynamical system may be defined formally, as a measure-preserving transformation of a sigma-algebra, the triplet (T, (X, Σ, μ), Φ) Here, T is a monoid (usually the non-negative integers), X is a set, and Σ is a topology on X, so that (X, Σ) is a σ-algebra. For every element σ in Σ, μ is its finite measure, so that the triplet (X, Σ, μ) is a probability space. A map Φ: X → X is said to be Σ-measurable if and only if, for every σ in Σ, one has Φ−1(σ) ∈ Σ. A map Φ is said to preserve the measure if and only if, for every σ in Σ, one has μ(Φ−1(σ)) = μ(σ). Combining the above, a map Φ is said to be a measure-preserving transformation of X, if it is a map from X to itself, it is Σ-measurable, and is measure-preserving. The triplet (T, (X, Σ, μ), φ), for such a Φ, is then defined to be a dynamical system.
The map Φ embodies the time evolution of the dynamical system. Thus, for discrete dynamical systems the iterates for every integer n are studied. For continuous dynamical systems, the map Φ is understood to be finite time evolution map and the construction is more complicated.
Read more about this topic: Dynamical System (definition)
Famous quotes containing the words measure, theoretical and/or definition:
“This entire most beautiful order of good things is going to pass away after its measure has been exhausted; for both morning and evening were made in them.”
—St. Augustine (354430)
“The desire to serve the common good must without fail be a requisite of the soul, a necessity for personal happiness; if it issues not from there, but from theoretical or other considerations, it is not at all the same thing.”
—Anton Pavlovich Chekhov (18601904)
“One definition of man is an intelligence served by organs.”
—Ralph Waldo Emerson (18031882)