Polynomials and Power Series
Divided differences of polynomials are particularly interesting, because they can benefit from the Leibniz rule. The matrix with
contains the divided difference scheme for the identity function with respect to the nodes, thus contains the divided differences for the power function with exponent . Consequently you can obtain the divided differences for a polynomial function with respect to the polynomial by applying (more precisely: its corresponding matrix polynomial function ) to the matrix .
This is known as Opitz' formula.
Now consider increasing the degree of to infinity, i.e. turn the Taylor polynomial to a Taylor series. Let be a function which corresponds to a power series. You can compute a divided difference scheme by computing the according matrix series applied to . If the nodes are all equal, then is a Jordan block and computation boils down to generalizing a scalar function to a matrix function using Jordan decomposition.
Read more about this topic: Divided Differences
Famous quotes containing the words power and/or series:
“He utters substantial English thoughts in plainest English dialects.... Indeed, for fluency and skill in the use of the English tongue, he is a master unrivaled. His felicity and power of expression surpass even his special merits as historian and critic.”
—Henry David Thoreau (18171862)
“The womans world ... is shown as a series of limited spaces, with the woman struggling to get free of them. The struggle is what the film is about; what is struggled against is the limited space itself. Consequently, to make its point, the film has to deny itself and suggest it was the struggle that was wrong, not the space.”
—Jeanine Basinger (b. 1936)