Quadratic Formula
The quadratic polynomial P(x) = ax2 + bx + c has discriminant
which is the quantity under the square root sign in the quadratic formula. For real numbers a, b, c, one has:
- When Δ > 0, P(x) has two distinct real roots
and its graph crosses the x-axis twice.
- When Δ = 0, P(x) has two coincident real roots
and its graph is tangent to the x-axis.
- When Δ < 0, P(x) has no real roots, and its graph lies strictly above or below the x-axis. The polynomial has two distinct complex roots
An alternative way to understand the discriminant of a quadratic is to use the characterization as "zero if and only if the polynomial has a repeated root". In that case the polynomial is The coefficients then satisfy so and a monic quadratic has a repeated root if and only if this is the case, in which case the root is Putting both terms on one side and including a leading coefficient yields
Read more about this topic: Discriminant
Famous quotes containing the word formula:
“In the most desirable conditions, the child learns to manage anxiety by being exposed to just the right amounts of it, not much more and not much less. This optimal amount of anxiety varies with the childs age and temperament. It may also vary with cultural values.... There is no mathematical formula for calculating exact amounts of optimal anxiety. This is why child rearing is an art and not a science.”
—Alicia F. Lieberman (20th century)