Definition and Properties
A measure defined on the Lebesgue measurable sets of the real line with values in is said to be discrete if there exists a (possibly finite) sequence of numbers
such that
The simplest example of a discrete measure on the real line is the Dirac delta function One has and
More generally, if is a (possibly finite) sequence of real numbers, is a sequence of numbers in of the same length, one can consider the Dirac measures defined by
for any Lebesgue measurable set Then, the measure
is a discrete measure. In fact, one may prove that any discrete measure on the real line has this form for appropriately chosen sequences and
Read more about this topic: Discrete Measure
Famous quotes containing the words definition and/or properties:
“Mothers often are too easily intimidated by their childrens negative reactions...When the child cries or is unhappy, the mother reads this as meaning that she is a failure. This is why it is so important for a mother to know...that the process of growing up involves by definition things that her child is not going to like. Her job is not to create a bed of roses, but to help him learn how to pick his way through the thorns.”
—Elaine Heffner (20th century)
“A drop of water has the properties of the sea, but cannot exhibit a storm. There is beauty of a concert, as well as of a flute; strength of a host, as well as of a hero.”
—Ralph Waldo Emerson (18031882)