In mathematics, more precisely in measure theory, a measure on the real line is called a discrete measure (in respect to the Lebesgue measure) if its support is at most a countable set. Note that the support need not be a discrete set. Geometrically, a discrete measure (on the real line, with respect to Lebesgue measure) is a collection of point masses.
Read more about Discrete Measure: Definition and Properties, Extensions
Famous quotes containing the words discrete and/or measure:
“One can describe a landscape in many different words and sentences, but one would not normally cut up a picture of a landscape and rearrange it in different patterns in order to describe it in different ways. Because a photograph is not composed of discrete units strung out in a linear row of meaningful pieces, we do not understand it by looking at one element after another in a set sequence. The photograph is understood in one act of seeing; it is perceived in a gestalt.”
—Joshua Meyrowitz, U.S. educator, media critic. The Blurring of Public and Private Behaviors, No Sense of Place: The Impact of Electronic Media on Social Behavior, Oxford University Press (1985)
“One might imagine that a movement which is so preoccupied with the fulfillment of human potential would have a measure of respect for those who nourish its source. But politics make strange bedfellows, and liberated women have elected to become part of a long tradition of hostility to mothers.”
—Elaine Heffner (20th century)