Dirichlet Convolution - Dirichlet Series

Dirichlet Series

If f is an arithmetic function, one defines its Dirichlet series generating function by


DG(f;s) = \sum_{n=1}^\infty \frac{f(n)}{n^s}

for those complex arguments s for which the series converges (if there are any). The multiplication of Dirichlet series is compatible with Dirichlet convolution in the following sense:


DG(f;s) DG(g;s) = DG(f*g;s)\,

for all s for which both series of the left hand side converge, one of them at least converging absolutely (note that simple convergence of both series of the left hand side DOES NOT imply convergence of the right hand side!). This is akin to the convolution theorem if one thinks of Dirichlet series as a Fourier transform.

Read more about this topic:  Dirichlet Convolution

Famous quotes containing the word series:

    Autobiography is only to be trusted when it reveals something disgraceful. A man who gives a good account of himself is probably lying, since any life when viewed from the inside is simply a series of defeats.
    George Orwell (1903–1950)