Direct Sum of Modules With Additional Structure
If the modules we are considering carry some additional structure (e.g. a norm or an inner product), then the direct sum of the modules can often be made to carry this additional structure, as well. In this case, we obtain the coproduct in the appropriate category of all objects carrying the additional structure. Three prominent examples occur for algebras over a field, Banach spaces and Hilbert spaces.
Read more about this topic: Direct Sum Of Modules
Famous quotes containing the words direct, sum, additional and/or structure:
“O wretched fool,
That lovst to make thine honesty a vice!
O monstrous world! Take note, take note, O world,
To be direct and honest is not safe.”
—William Shakespeare (15641616)
“To sum up:
1. The cosmos is a gigantic fly-wheel making 10,000 revolutions a minute.
2. Man is a sick fly taking a dizzy ride on it.
3. Religion is the theory that the wheel was designed and set spinning to give him the ride.”
—H.L. (Henry Lewis)
“When I turned into a parent, I experienced a real and total personality change that slowly shifted back to the normal me, yet has not completely vanished. I believe the two levels are now superimposed, with an additional sprinkling of mortality intimations.”
—Sonia Taitz (20th century)
“The verbal poetical texture of Shakespeare is the greatest the world has known, and is immensely superior to the structure of his plays as plays. With Shakespeare it is the metaphor that is the thing, not the play.”
—Vladimir Nabokov (18991977)