Direct Sum of Modules - Direct Sum of Modules With Additional Structure

Direct Sum of Modules With Additional Structure

If the modules we are considering carry some additional structure (e.g. a norm or an inner product), then the direct sum of the modules can often be made to carry this additional structure, as well. In this case, we obtain the coproduct in the appropriate category of all objects carrying the additional structure. Three prominent examples occur for algebras over a field, Banach spaces and Hilbert spaces.

Read more about this topic:  Direct Sum Of Modules

Famous quotes containing the words direct, sum, additional and/or structure:

    The most passionate, consistent, extreme and implacable enemy of the Enlightenment and ... all forms of rationalism ... was Johann Georg Hamann. His influence, direct and indirect, upon the romantic revolt against universalism and scientific method ... was considerable and perhaps crucial.
    Isaiah Berlin (b. 1909)

    Nor sequent centuries could hit
    Orbit and sum of SHAKSPEARE’s wit.
    The men who lived with him became
    Poets, for the air was fame.
    Ralph Waldo Emerson (1803–1882)

    The world will never be long without some good reason to hate the unhappy; their real faults are immediately detected, and if those are not sufficient to sink them into infamy, an additional weight of calumny will be superadded.
    Samuel Johnson (1709–1784)

    The verbal poetical texture of Shakespeare is the greatest the world has known, and is immensely superior to the structure of his plays as plays. With Shakespeare it is the metaphor that is the thing, not the play.
    Vladimir Nabokov (1899–1977)