Direct Product of Groups - Definition

Definition

Given groups G and H, the direct product G × H is defined as follows:

  1. The elements of G × H are ordered pairs (g, h), where gG and hH. That is, the set of elements of G × H is the Cartesian product of the sets G and H.
  2. The binary operation on G × H is defined componentwise:
    (g1, h1) · (g2, h2) = (g1 · g2, h1 · h2)

The resulting algebraic object satisfies the axioms for a group. Specifically:

Associativity
The binary operation on G × H is indeed associative.
Identity
The direct product has an identity element, namely (1G, 1H), where 1G is the identity element of G and 1H is the identity element of H.
Inverses
The inverse of an element (g, h) of G × H is the pair (g−1, h−1), where g−1 is the inverse of g in G, and h−1 is the inverse of h in H.

Read more about this topic:  Direct Product Of Groups

Famous quotes containing the word definition:

    Mothers often are too easily intimidated by their children’s negative reactions...When the child cries or is unhappy, the mother reads this as meaning that she is a failure. This is why it is so important for a mother to know...that the process of growing up involves by definition things that her child is not going to like. Her job is not to create a bed of roses, but to help him learn how to pick his way through the thorns.
    Elaine Heffner (20th century)

    No man, not even a doctor, ever gives any other definition of what a nurse should be than this—”devoted and obedient.” This definition would do just as well for a porter. It might even do for a horse. It would not do for a policeman.
    Florence Nightingale (1820–1910)

    The definition of good prose is proper words in their proper places; of good verse, the most proper words in their proper places. The propriety is in either case relative. The words in prose ought to express the intended meaning, and no more; if they attract attention to themselves, it is, in general, a fault.
    Samuel Taylor Coleridge (1772–1834)