Direct Product of Groups - Definition

Definition

Given groups G and H, the direct product G × H is defined as follows:

  1. The elements of G × H are ordered pairs (g, h), where gG and hH. That is, the set of elements of G × H is the Cartesian product of the sets G and H.
  2. The binary operation on G × H is defined componentwise:
    (g1, h1) · (g2, h2) = (g1 · g2, h1 · h2)

The resulting algebraic object satisfies the axioms for a group. Specifically:

Associativity
The binary operation on G × H is indeed associative.
Identity
The direct product has an identity element, namely (1G, 1H), where 1G is the identity element of G and 1H is the identity element of H.
Inverses
The inverse of an element (g, h) of G × H is the pair (g−1, h−1), where g−1 is the inverse of g in G, and h−1 is the inverse of h in H.

Read more about this topic:  Direct Product Of Groups

Famous quotes containing the word definition:

    The physicians say, they are not materialists; but they are:MSpirit is matter reduced to an extreme thinness: O so thin!—But the definition of spiritual should be, that which is its own evidence. What notions do they attach to love! what to religion! One would not willingly pronounce these words in their hearing, and give them the occasion to profane them.
    Ralph Waldo Emerson (1803–1882)

    Scientific method is the way to truth, but it affords, even in
    principle, no unique definition of truth. Any so-called pragmatic
    definition of truth is doomed to failure equally.
    Willard Van Orman Quine (b. 1908)

    The definition of good prose is proper words in their proper places; of good verse, the most proper words in their proper places. The propriety is in either case relative. The words in prose ought to express the intended meaning, and no more; if they attract attention to themselves, it is, in general, a fault.
    Samuel Taylor Coleridge (1772–1834)