Group Direct Product
In group theory one can define the direct product of two groups (G, *) and (H, ●), denoted by G × H. For abelian groups which are written additively, it may also be called the direct sum of two groups, denoted by .
It is defined as follows:
- the set of the elements of the new group is the cartesian product of the sets of elements of G and H, that is {(g, h): g in G, h in H};
- on these elements put an operation, defined elementwise:
(g, h) × (g', h' ) = (g * g', h ● h' )
(Note the operation * may be the same as ●.)
This construction gives a new group. It has a normal subgroup isomorphic to G (given by the elements of the form (g, 1)), and one isomorphic to H (comprising the elements (1, h)).
The reverse also holds, there is the following recognition theorem: If a group K contains two normal subgroups G and H, such that K= GH and the intersection of G and H contains only the identity, then K is isomorphic to G x H. A relaxation of these conditions, requiring only one subgroup to be normal, gives the semidirect product.
As an example, take as G and H two copies of the unique (up to isomorphisms) group of order 2, C2: say {1, a} and {1, b}. Then C2×C2 = {(1,1), (1,b), (a,1), (a,b)}, with the operation element by element. For instance, (1,b)*(a,1) = (1*a, b*1) = (a,b), and (1,b)*(1,b) = (1,b2) = (1,1).
With a direct product, we get some natural group homomorphisms for free: the projection maps
- ,
called the coordinate functions.
Also, every homomorphism f on the direct product is totally determined by its component functions .
For any group (G, *), and any integer n ≥ 0, multiple application of the direct product gives the group of all n-tuples Gn (for n=0 the trivial group). Examples:
- Zn
- Rn (with additional vector space structure this is called Euclidean space, see below)
Read more about this topic: Direct Product
Famous quotes containing the words group, direct and/or product:
“A little group of willful men, representing no opinion but their own, have rendered the great government of the United States helpless and contemptible.”
—Woodrow Wilson (18561924)
“The shortest route is not the most direct one, but rather the one where the most favorable winds swell our sails:Mthat is the lesson that seafarers teach. Not to abide by this lesson is to be obstinate: here, firmness of character is tainted with stupidity.”
—Friedrich Nietzsche (18441900)
“In fast-moving, progress-conscious America, the consumer expects to be dizzied by progress. If he could completely understand advertising jargon he would be badly disappointed. The half-intelligibility which we expect, or even hope, to find in the latest product language personally reassures each of us that progress is being made: that the pace exceeds our ability to follow.”
—Daniel J. Boorstin (b. 1914)