Group Direct Product
In group theory one can define the direct product of two groups (G, *) and (H, ●), denoted by G × H. For abelian groups which are written additively, it may also be called the direct sum of two groups, denoted by .
It is defined as follows:
- the set of the elements of the new group is the cartesian product of the sets of elements of G and H, that is {(g, h): g in G, h in H};
- on these elements put an operation, defined elementwise:
(g, h) × (g', h' ) = (g * g', h ● h' )
(Note the operation * may be the same as ●.)
This construction gives a new group. It has a normal subgroup isomorphic to G (given by the elements of the form (g, 1)), and one isomorphic to H (comprising the elements (1, h)).
The reverse also holds, there is the following recognition theorem: If a group K contains two normal subgroups G and H, such that K= GH and the intersection of G and H contains only the identity, then K is isomorphic to G x H. A relaxation of these conditions, requiring only one subgroup to be normal, gives the semidirect product.
As an example, take as G and H two copies of the unique (up to isomorphisms) group of order 2, C2: say {1, a} and {1, b}. Then C2×C2 = {(1,1), (1,b), (a,1), (a,b)}, with the operation element by element. For instance, (1,b)*(a,1) = (1*a, b*1) = (a,b), and (1,b)*(1,b) = (1,b2) = (1,1).
With a direct product, we get some natural group homomorphisms for free: the projection maps
- ,
called the coordinate functions.
Also, every homomorphism f on the direct product is totally determined by its component functions .
For any group (G, *), and any integer n ≥ 0, multiple application of the direct product gives the group of all n-tuples Gn (for n=0 the trivial group). Examples:
- Zn
- Rn (with additional vector space structure this is called Euclidean space, see below)
Read more about this topic: Direct Product
Famous quotes containing the words group, direct and/or product:
“The virtue of dress rehearsals is that they are a free show for a select group of artists and friends of the author, and where for one unique evening the audience is almost expurgated of idiots.”
—Alfred Jarry (18731907)
“A temple, you know, was anciently an open place without a roof, whose walls served merely to shut out the world and direct the mind toward heaven; but a modern meeting-house shuts out the heavens, while it crowds the world into still closer quarters.”
—Henry David Thoreau (18171862)
“The product of the artist has become less important than the fact of the artist. We wish to absorb this person. We wish to devour someone who has experienced the tragic. In our society this person is much more important than anything he might create.”
—David Mamet (b. 1947)