Direct Product - Group Direct Product

Group Direct Product

In group theory one can define the direct product of two groups (G, *) and (H, ●), denoted by G × H. For abelian groups which are written additively, it may also be called the direct sum of two groups, denoted by .

It is defined as follows:

  • the set of the elements of the new group is the cartesian product of the sets of elements of G and H, that is {(g, h): g in G, h in H};
  • on these elements put an operation, defined elementwise:
    (g, h) × (g', h' ) = (g * g', hh' )

(Note the operation * may be the same as ●.)

This construction gives a new group. It has a normal subgroup isomorphic to G (given by the elements of the form (g, 1)), and one isomorphic to H (comprising the elements (1, h)).

The reverse also holds, there is the following recognition theorem: If a group K contains two normal subgroups G and H, such that K= GH and the intersection of G and H contains only the identity, then K is isomorphic to G x H. A relaxation of these conditions, requiring only one subgroup to be normal, gives the semidirect product.

As an example, take as G and H two copies of the unique (up to isomorphisms) group of order 2, C2: say {1, a} and {1, b}. Then C2×C2 = {(1,1), (1,b), (a,1), (a,b)}, with the operation element by element. For instance, (1,b)*(a,1) = (1*a, b*1) = (a,b), and (1,b)*(1,b) = (1,b2) = (1,1).

With a direct product, we get some natural group homomorphisms for free: the projection maps

,

called the coordinate functions.

Also, every homomorphism f on the direct product is totally determined by its component functions .

For any group (G, *), and any integer n ≥ 0, multiple application of the direct product gives the group of all n-tuples Gn (for n=0 the trivial group). Examples:

  • Zn
  • Rn (with additional vector space structure this is called Euclidean space, see below)

Read more about this topic:  Direct Product

Famous quotes containing the words group, direct and/or product:

    The trouble with tea is that originally it was quite a good drink. So a group of the most eminent British scientists put their heads together, and made complicated biological experiments to find a way of spoiling it. To the eternal glory of British science their labour bore fruit.
    George Mikes (b. 1912)

    Besides, our action on each other, good as well as evil, is so incidental and at random, that we can seldom hear the acknowledgments of any person who would thank us for a benefit, without some shame and humiliation. We can rarely strike a direct stroke, but must be content with an oblique one; we seldom have the satisfaction of yielding a direct benefit, which is directly received.
    Ralph Waldo Emerson (1803–1882)

    Culture is a sham if it is only a sort of Gothic front put on an iron building—like Tower Bridge—or a classical front put on a steel frame—like the Daily Telegraph building in Fleet Street. Culture, if it is to be a real thing and a holy thing, must be the product of what we actually do for a living—not something added, like sugar on a pill.
    Eric Gill (1882–1940)