Direct Product - Group Direct Product

Group Direct Product

In group theory one can define the direct product of two groups (G, *) and (H, ●), denoted by G × H. For abelian groups which are written additively, it may also be called the direct sum of two groups, denoted by .

It is defined as follows:

  • the set of the elements of the new group is the cartesian product of the sets of elements of G and H, that is {(g, h): g in G, h in H};
  • on these elements put an operation, defined elementwise:
    (g, h) × (g', h' ) = (g * g', hh' )

(Note the operation * may be the same as ●.)

This construction gives a new group. It has a normal subgroup isomorphic to G (given by the elements of the form (g, 1)), and one isomorphic to H (comprising the elements (1, h)).

The reverse also holds, there is the following recognition theorem: If a group K contains two normal subgroups G and H, such that K= GH and the intersection of G and H contains only the identity, then K is isomorphic to G x H. A relaxation of these conditions, requiring only one subgroup to be normal, gives the semidirect product.

As an example, take as G and H two copies of the unique (up to isomorphisms) group of order 2, C2: say {1, a} and {1, b}. Then C2×C2 = {(1,1), (1,b), (a,1), (a,b)}, with the operation element by element. For instance, (1,b)*(a,1) = (1*a, b*1) = (a,b), and (1,b)*(1,b) = (1,b2) = (1,1).

With a direct product, we get some natural group homomorphisms for free: the projection maps

,

called the coordinate functions.

Also, every homomorphism f on the direct product is totally determined by its component functions .

For any group (G, *), and any integer n ≥ 0, multiple application of the direct product gives the group of all n-tuples Gn (for n=0 the trivial group). Examples:

  • Zn
  • Rn (with additional vector space structure this is called Euclidean space, see below)

Read more about this topic:  Direct Product

Famous quotes containing the words group, direct and/or product:

    The conflict between the need to belong to a group and the need to be seen as unique and individual is the dominant struggle of adolescence.
    Jeanne Elium (20th century)

    One should never direct people towards happiness, because happiness too is an idol of the market-place. One should direct them towards mutual affection. A beast gnawing at its prey can be happy too, but only human beings can feel affection for each other, and this is the highest achievement they can aspire to.
    Alexander Solzhenitsyn (b. 1918)

    The product of mental labor—science—always stands far below its value, because the labor-time necessary to reproduce it has no relation at all to the labor-time required for its original production.
    Karl Marx (1818–1883)