Differential Entropy - Maximization in The Normal Distribution

Maximization in The Normal Distribution

With a normal distribution, differential entropy is maximized for a given variance. The following is a proof that a Gaussian variable has the largest entropy amongst all random variables of equal variance.

Let g(x) be a Gaussian PDF with mean μ and variance σ2 and f(x) an arbitrary PDF with the same variance. Since differential entropy is translation invariant we can assume that f(x) has the same mean of μ as g(x).

Consider the Kullback-Leibler divergence between the two distributions

Now note that

\begin{align} \int_{-\infty}^\infty f(x)\log(g(x)) dx &= \int_{-\infty}^\infty f(x)\log\left( \frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}\right) dx \\ &= \int_{-\infty}^\infty f(x) \log\frac{1}{\sqrt{2\pi\sigma^2}} dx + \log(e)\int_{-\infty}^\infty f(x)\left( -\frac{(x-\mu)^2}{2\sigma^2}\right) dx \\ &= -\tfrac{1}{2}\log(2\pi\sigma^2) - \log(e)\frac{\sigma^2}{2\sigma^2} \\ &= -\tfrac{1}{2}\left(\log(2\pi\sigma^2) + \log(e)\right) \\ &= -\tfrac{1}{2}\log(2\pi e \sigma^2) \\ &= -h(g)
\end{align}

because the result does not depend on f(x) other than through the variance. Combining the two results yields

with equality when g(x) = f(x) following from the properties of Kullback-Leibler divergence.

This result may also be demonstrated using the variational calculus. A Lagrangian function with two Lagrangian multipliers may be defined as:

where g(x) is some function with mean μ. When the entropy of g(x) is at a maximum and the constraint equations, which consist of the normalization condition and the requirement of fixed variance, are both satisfied, then a small variation δg(x) about g(x) will produce a variation δL about L which is equal to zero:

Since this must hold for any small δg(x), the term in brackets must be zero, and solving for g(x) yields:

Using the constraint equations to solve for λ0 and λ yields the normal distribution:

Read more about this topic:  Differential Entropy

Famous quotes containing the words normal and/or distribution:

    You know that fiction, prose rather, is possibly the roughest trade of all in writing. You do not have the reference, the old important reference. You have the sheet of blank paper, the pencil, and the obligation to invent truer than things can be true. You have to take what is not palpable and make it completely palpable and also have it seem normal and so that it can become a part of experience of the person who reads it.
    Ernest Hemingway (1899–1961)

    My topic for Army reunions ... this summer: How to prepare for war in time of peace. Not by fortifications, by navies, or by standing armies. But by policies which will add to the happiness and the comfort of all our people and which will tend to the distribution of intelligence [and] wealth equally among all. Our strength is a contented and intelligent community.
    Rutherford Birchard Hayes (1822–1893)