Dissipation in Systems With Semi-detailed Balance
Let us represent the generalized mass action law in the equivalent form: the rate of the elementary process
is
where is the chemical potential and is the Helmholtz free energy. The exponential term is called the Boltzmann factor and the multiplier is the kinetic factor. Let us count the direct and reverse reaction in the kinetic equation separately:
An auxiliary function of one variable is convenient for the representation of dissipation for the mass action law
This function may be considered as the sum of the reaction rates for deformed input stoichiometric coefficients . For it is just the sum of the reaction rates. The function is convex because .
Direct calculation gives that according to the kinetic equations
This is the general dissipation formula for the generalized mass action law.
Convexity of gives the sufficient and necessary conditions for the proper dissipation inequality:
The semi-detailed balance condition can be transformed into identity . Therefore, for the systems with semi-detailed balance .
Read more about this topic: Detailed Balance
Famous quotes containing the words dissipation, systems and/or balance:
“Life is hard, we say. An oysters life is worse. She lives motionless, soundless, her own cold ugly shape her only dissipation ...”
—M.F.K. Fisher (b. 1908)
“Before anything else, we need a new age of Enlightenment. Our present political systems must relinquish their claims on truth, justice and freedom and have to replace them with the search for truth, justice, freedom and reason.”
—Friedrich Dürrenmatt (19211990)
“The most perfect political community must be amongst those who are in the middle rank, and those states are best instituted wherein these are a larger and more respectable part, if possible, than both the other; or, if that cannot be, at least than either of them separate, so that being thrown into the balance it may prevent either scale from preponderating.”
—Aristotle (384322 B.C.)