Dissipation in Systems With Semi-detailed Balance
Let us represent the generalized mass action law in the equivalent form: the rate of the elementary process
is
where is the chemical potential and is the Helmholtz free energy. The exponential term is called the Boltzmann factor and the multiplier is the kinetic factor. Let us count the direct and reverse reaction in the kinetic equation separately:
An auxiliary function of one variable is convenient for the representation of dissipation for the mass action law
This function may be considered as the sum of the reaction rates for deformed input stoichiometric coefficients . For it is just the sum of the reaction rates. The function is convex because .
Direct calculation gives that according to the kinetic equations
This is the general dissipation formula for the generalized mass action law.
Convexity of gives the sufficient and necessary conditions for the proper dissipation inequality:
The semi-detailed balance condition can be transformed into identity . Therefore, for the systems with semi-detailed balance .
Read more about this topic: Detailed Balance
Famous quotes containing the words dissipation, systems and/or balance:
“Life is hard, we say. An oysters life is worse. She lives motionless, soundless, her own cold ugly shape her only dissipation ...”
—M.F.K. Fisher (b. 1908)
“People stress the violence. Thats the smallest part of it. Football is brutal only from a distance. In the middle of it theres a calm, a tranquility. The players accept pain. Theres a sense of order even at the end of a running play with bodies stewn everywhere. When the systems interlock, theres a satisfaction to the game that cant be duplicated. Theres a harmony.”
—Don Delillo (b. 1926)
“We must introduce a new balance in the relationship between the individual and the governmenta balance that favors greater individual freedom and self-reliance.”
—Gerald R. Ford (b. 1913)