The Relation To Derived Functors
The derived category is a natural framework to define and study derived functors. In the following, let be a functor of abelian categories. There are two dual concepts:
- right derived functors are "deriving" left exact functors and are calculated via injective resolutions
- left derived functors come from right exact functors and are calculated via projective resolutions
In the following we will describe right derived functors. So, assume that F is left exact. Typical examples are, or for some fixed object A, or the global sections functor on sheaves or the direct image functor. Their right derived functors are Extn(–,A), Extn(A,–), Hn(X, F) or Rnf∗ (F), respectively.
The derived category allows us to encapsulate all derived functors RnF in one functor, namely the so-called total derived functor . It is the following composition:, where the first equivalence of categories is described above. The classical derived functors are related to the total one via . One might say that the RnF forget the chain complex and keep only the cohomologies, whereas R F does keep track of the complexes.
Derived categories are, in a sense, the "right" place to study these functors. For example, the Grothendieck spectral sequence of a composition of two functors
such that F maps injective objects in A to G-acyclics (i.e. RiG(F(I)) = 0 for all i > 0 and injective I), is an expression of the following identity of total derived functors
- R(G○F) ≅ RG○RF.
J.-L. Verdier showed how derived functors associated with an abelian category A can be viewed as Kan extensions along embeddings of A into suitable derived categories .
Read more about this topic: Derived Category
Famous quotes containing the words relation and/or derived:
“In relation to God, we are like a thief who has burgled the house of a kindly householder and been allowed to keep some of the gold. From the point of view of the lawful owner this gold is a gift; From the point of view of the burglar it is a theft. He must go and give it back. It is the same with our existence. We have stolen a little of Gods being to make it ours. God has made us a gift of it. But we have stolen it. We must return it.”
—Simone Weil (19091943)
“These are our grievances which we have thus laid before his majesty with that freedom of language and sentiment which becomes a free people, claiming their rights as derived from the laws of nature, and not as the gift of their chief magistrate.”
—Thomas Jefferson (17431826)