Definition
Formally, the s-density bundle Vols(M) of a differentiable manifold M is obtained by an associated bundle construction, intertwining the one-dimensional group representation
of the general linear group with the frame bundle of M. More precisely,
The resulting line bundle is known as the bundle of s-densities, and is denoted by
A 1-density is also referred to simply as a density.
More generally, the associated bundle construction also allows densities to be constructed from any vector bundle E on M.
In detail, if (Uα,φα) is an atlas of coordinate charts on M, then there is associated a local trivialization of
subordinate to the open cover Uα such that the associated GL(1)-cocycle satisfies
Read more about this topic: Density On A Manifold
Famous quotes containing the word definition:
“Scientific method is the way to truth, but it affords, even in
principle, no unique definition of truth. Any so-called pragmatic
definition of truth is doomed to failure equally.”
—Willard Van Orman Quine (b. 1908)
“Beauty, like all other qualities presented to human experience, is relative; and the definition of it becomes unmeaning and useless in proportion to its abstractness. To define beauty not in the most abstract, but in the most concrete terms possible, not to find a universal formula for it, but the formula which expresses most adequately this or that special manifestation of it, is the aim of the true student of aesthetics.”
—Walter Pater (18391894)
“Perhaps the best definition of progress would be the continuing efforts of men and women to narrow the gap between the convenience of the powers that be and the unwritten charter.”
—Nadine Gordimer (b. 1923)