Degrees of Freedom of A Random Vector
Geometrically, the degrees of freedom can be interpreted as the dimension of certain vector subspaces. As a starting point, suppose that we have a sample of n independent normally distributed observations,
- .
This can be represented as an n-dimensional random vector:
Since this random vector can lie anywhere in n-dimensional space, it has n degrees of freedom.
Now, let be the sample mean. The random vector can be decomposed as the sum of the sample mean plus a vector of residuals:
The first vector on the right-hand side is constrained to be a multiple of the vector of 1's, and the only free quantity is . It therefore has 1 degree of freedom.
The second vector is constrained by the relation . The first n − 1 components of this vector can be anything. However, once you know the first n − 1 components, the constraint tells you the value of the nth component. Therefore, this vector has n − 1 degrees of freedom.
Mathematically, the first vector is the orthogonal, or least-squares, projection of the data vector onto the subspace spanned by the vector of 1's. The 1 degree of freedom is the dimension of this subspace. The second residual vector is the least-squares projection onto the (n − 1)-dimensional orthogonal complement of this subspace, and has n − 1 degrees of freedom.
In statistical testing applications, often one isn't directly interested in the component vectors, but rather in their squared lengths. In the example above, the residual sum-of-squares is
If the data points are normally distributed with mean 0 and variance, then the residual sum of squares has a scaled chi-squared distribution (scaled by the factor ), with n − 1 degrees of freedom. The degrees-of-freedom, here a parameter of the distribution, can still be interpreted as the dimension of an underlying vector subspace.
Likewise, the one-sample t-test statistic,
follows a Student's t distribution with n − 1 degrees of freedom when the hypothesized mean is correct. Again, the degrees-of-freedom arises from the residual vector in the denominator.
Read more about this topic: Degrees Of Freedom (statistics)
Famous quotes containing the words degrees of, degrees, freedom and/or random:
“When a thought of Plato becomes a thought to me,when a truth that fired the soul of Pindar fires mine, time is no more. When I feel that we two meet in a perception, that our two souls are tinged with the same hue, and do as it were run into one, why should I measure degrees of latitude, why should I count Egyptian years?”
—Ralph Waldo Emerson (18031882)
“For the profit of travel: in the first place, you get rid of a few prejudices.... The prejudiced against color finds several hundred millions of people of all shades of color, and all degrees of intellect, rank, and social worth, generals, judges, priests, and kings, and learns to give up his foolish prejudice.”
—Herman Melville (18191891)
“The question is whether personal freedom is worth the terrible effort, the never-lifted burden and risks of self-reliance.”
—Rose Wilder Lane (18861968)
“Assemble, first, all casual bits and scraps
That may shake down into a world perhaps;
People this world, by chance created so,
With random persons whom you do not know”
—Robert Graves (18951985)