Degrees of Freedom in Linear Models
The demonstration of the t and chi-squared distributions for one-sample problems above is the simplest example where degrees-of-freedom arise. However, similar geometry and vector decompositions underlie much of the theory of linear models, including linear regression and analysis of variance. An explicit example based on comparison of three means is presented here; the geometry of linear models is discussed in more complete detail by Christensen (2002).
Suppose independent observations are made for three populations, and . The restriction to three groups and equal sample sizes simplifies notation, but the ideas are easily generalized.
The observations can be decomposed as
where are the means of the individual samples, and is the mean of all 3n observations. In vector notation this decomposition can be written as
The observation vector, on the left-hand side, has 3n degrees of freedom. On the right-hand side, the first vector has one degree of freedom (or dimension) for the overall mean. The second vector depends on three random variables, and . However, these must sum to 0 and so are constrained; the vector therefore must lie in a 2-dimensional subspace, and has 2 degrees of freedom. The remaining 3n − 3 degrees of freedom are in the residual vector (made up of n − 1 degrees of freedom within each of the populations).
Read more about this topic: Degrees Of Freedom (statistics)
Famous quotes containing the words degrees of, degrees, freedom and/or models:
“For the profit of travel: in the first place, you get rid of a few prejudices.... The prejudiced against color finds several hundred millions of people of all shades of color, and all degrees of intellect, rank, and social worth, generals, judges, priests, and kings, and learns to give up his foolish prejudice.”
—Herman Melville (18191891)
“No sooner met but they looked; no sooner looked but they loved; no sooner loved but they sighed; no sooner sighed but they asked one another the reason; no sooner knew the reason but they sought the remedy; and in these degrees have they made a pair of stairs to marriage, which they will climb incontinent, or else be incontinent before marriage.”
—William Shakespeare (15641616)
“None who have always been free can understand the terrible fascinating power of the hope of freedom to those who are not free.”
—Pearl S. Buck (18921973)
“Today it is not the classroom nor the classics which are the repositories of models of eloquence, but the ad agencies.”
—Marshall McLuhan (19111980)