Cubic Plane Curve - Cubic Curves in The Plane of A Triangle

Cubic Curves in The Plane of A Triangle

Suppose that ABC is a triangle with sidelengths a = |BC|, b = |CA|, c = |AB|. Relative to ABC, many named cubics pass through well known points. Examples shown below use two kinds of homogeneous coordinates: trilinear and barycentric.

To convert from trilinear to barycentric in a cubic equation, substitute as follows:

x → bcx, y → cay, z → abz;

to convert from barycentric to trilinear, use

x → ax, y → by, z → cz.

Many equations for cubics have the form

f(a,b,c,x,y,z) + f(b,c,a,y,z,x) + f(c,a,b,z,x,y) = 0.

In the examples below, such equations are written more succinctly in "cyclic sum notation", like this:

= 0.

The cubics listed below can be defined in terms of the isogonal conjugate, denoted by X*, of a point X not on a sideline of ABC. A construction of X* follows. Let LA be the reflection of line XA about the internal angle bisector of angle A, and define LB and LC analogously. Then the three reflected lines concur in X*. In trilinear coordinates, if X = x:y:z, then X* = 1/x:1/y:1/z.

Read more about this topic:  Cubic Plane Curve

Famous quotes containing the words cubic, curves and/or plane:

    One of the great natural phenomena is the way in which a tube of toothpaste suddenly empties itself when it hears that you are planning a trip, so that when you come to pack it is just a twisted shell of its former self, with not even a cubic millimeter left to be squeezed out.
    Robert Benchley (1889–1945)

    One way to do it might be by making the scenery penetrate the automobile. A polished black sedan was a good subject, especially if parked at the intersection of a tree-bordered street and one of those heavyish spring skies whose bloated gray clouds and amoeba-shaped blotches of blue seem more physical than the reticent elms and effusive pavement. Now break the body of the car into separate curves and panels; then put it together in terms of reflections.
    Vladimir Nabokov (1899–1977)

    We’ve got to figure these things a little bit different than most people. Y’know, there’s something about going out in a plane that beats any other way.... A guy that washes out at the controls of his own ship, well, he goes down doing the thing that he loved the best. It seems to me that that’s a very special way to die.
    Dalton Trumbo (1905–1976)