Properties
The number of edges in a crown graph is the pronic number n(n − 1). Its achromatic number is n: one can find a complete coloring by choosing each pair {ui, vi} as one of the color classes. Crown graphs are symmetric and distance-transitive. Archdeacon et al. (2004) describe partitions of the edges of a crown graph into equal-length cycles.
The 2n-vertex crown graph may be embedded into four-dimensional Euclidean space in such a way that all of its edges have unit length. However, this embedding may also place some non-adjacent vertices a unit distance apart. An embedding in which edges are at unit distance and non-edges are not at unit distance requires at least n − 2 dimensions. This example shows that a graph may require very different dimensions to be represented as a unit distance graphs and as a strict unit distance graph.
The minimum number of complete bipartite subgraphs needed to cover the edges of a crown graph (its bipartite dimension, or the size of a minimum biclique cover) is
the inverse function of the central binomial coefficient.
The complement graph of a 2n-vertex crown graph is the Cartesian product of complete graphs K2 Kn, or equivalently the 2 × n rook's graph.
Read more about this topic: Crown Graph
Famous quotes containing the word properties:
“The reason why men enter into society, is the preservation of their property; and the end why they choose and authorize a legislative, is, that there may be laws made, and rules set, as guards and fences to the properties of all the members of the society: to limit the power, and moderate the dominion, of every part and member of the society.”
—John Locke (16321704)
“A drop of water has the properties of the sea, but cannot exhibit a storm. There is beauty of a concert, as well as of a flute; strength of a host, as well as of a hero.”
—Ralph Waldo Emerson (18031882)