Cross-polytope

In geometry, a cross-polytope, orthoplex, hyperoctahedron, or cocube is a regular, convex polytope that exists in any number of dimensions. The vertices of a cross-polytope are all the permutations of (±1, 0, 0, …, 0). The cross-polytope is the convex hull of its vertices. Its facets are simplexes of the previous dimension, while the cross-polytope's vertex figure is another cross-polytope from the previous dimension.

The n-dimensional cross-polytope can also be defined as the closed unit ball (or, according to some authors, its boundary) in the ℓ1-norm on Rn:

In 1 dimension the cross-polytope is simply the line segment, in 2 dimensions it is a square (or diamond) with vertices {(±1, 0), (0, ±1)}. In 3 dimensions it is an octahedron—one of the five convex regular polyhedra known as the Platonic solids. Higher-dimensional cross-polytopes are generalizations of these.

2 dimensions
square
3 dimensions
octahedron
4 dimensions
16-cell

The cross-polytope is the dual polytope of the hypercube. The 1-skeleton of a n-dimensional cross-polytope is a Turán graph T(2n,n).

Read more about Cross-polytope:  4 Dimensions, Higher Dimensions