Crankcase Ventilation System - Components and Details

Components and Details

The PCV valve is only one part of the PCV system, which is essentially a variable and calibrated air leak, whereby the engine returns its crankcase combustion gases. Instead of the gases being vented to the atmosphere, gases are fed back into the intake manifold, to re-enter the combustion chamber as part of a fresh charge of air and fuel. The PCV system is not a classical "vacuum leak". All the air collected by the air cleaner (and metered by the mass flow sensor, on a fuel injected engine) goes through the intake manifold. The PCV system just diverts a small percentage of this air via the breather to the crankcase before allowing it to be drawn back in to the intake tract again. It is an "open system" in that fresh exterior air is continuously used to flush contaminants from the crankcase and into the combustion chamber.

The system relies on the fact that, while the engine is running under light load and moderate throttle opening, the intake manifold's air pressure is always less than crankcase air pressure (see manifold vacuum). The lower pressure of the intake manifold draws air towards it, pulling air from the breather through the crankcase (where it dilutes and mixes with combustion gases), through the PCV valve, and into the intake manifold.

The PCV system usually consists of the breather tube and the PCV valve. The breather tube connects the crankcase to a clean source of fresh air—the air cleaner body. Usually, clean air from the air cleaner flows into this tube and into the engine after passing through a screen, baffle, or other simple system to arrest a flame front, to prevent a potentially explosive atmosphere within the engine crank case from being ignited from a back-fire in to the intake manifold. The baffle, filter, or screen also traps oil mist, and keeps it inside the engine.

Once inside the engine, the air circulates around the interior of the engine, picking up and clearing away combustion byproduct gases, including a large amount of water vapor which includes dissolved chemical combustion byproducts, then exits through another simple baffle, screen, or mesh to trap oil droplets before being drawn out through the PCV valve, and into the intake manifold. On some PCV systems, this oil baffling takes place in a discrete replaceable part called the oil separator.

During the mid 1960s, substantial work was completed on an entirely independent crankcase ventilation system. The Engine Ventilation System had its own air intake filter, a sizable crankcase gases filter, condensate chamber, and highly engineered air flow valve. The system recycles clean water vapor, filters light oil, and filters air into the intake system before the carburetor, resulting in lower carbon monoxide and hydrocarbon emissions and extended engine oil life. Ford Motor Company made this system a requirement on all its material handling equipment (lift trucks) in 1971. This system was also used extensively on over-the-road diesel trucks and irrigation pumps. The AMA's choice of catalytic converter made automotive use unlikely.

The PCV valve connects the crankcase to the intake manifold from a location more-or-less opposite the breather connection. Typical locations include the opposite valve cover that the breather tube connects to on a V engine. A typical location is the valve cover(s), although some engines place the valve in locations far from the valve cover. The valve is simple, but actually performs a complicated control function. An internal restrictor (generally a cone or ball) is held in "normal" (engine off, zero vacuum) position with a light spring, exposing the full size of the PCV opening to the intake manifold. With the engine running, the tapered end of the cone is drawn towards the opening in the PCV valve by manifold vacuum, restricting the opening proportionate to the level of engine vacuum vs. spring tension. At idle, the intake manifold vacuum is near maximum. It is at this time the least amount of blow by is actually occurring, so the PCV valve provides the largest amount of (but not complete) restriction. As engine load increases, vacuum on the valve decreases proportionally and blow by increases proportionally. With a lower level of vacuum, the spring returns the cone to the "open" position to allow more air flow. At full throttle, vacuum is much reduced, down to between 1.5 and 3" Hg. At this point the PCV valve is nearly useless, and most combustion gases escape via the "breather tube" where they are then drawn in to the engine's intake manifold anyway.

Should the intake manifold's pressure be higher than that of the crankcase (which can happen in a turbocharged engine, or under certain conditions, such as an intake backfire), the PCV valve closes to prevent reversal of the exhausted air back into the crankcase again. In many cases PCV valves were only used for a few years, the function being taken over by a port on constant depression carburetors such as the SU. This has no moving parts or diaphragm to jam, block or rip like many PCV valves. It also doesn't have a 'one-way' function but the lack of it was never a problem in intake backfire.

It is critical that the parts of the PCV system be kept clean and open, otherwise air flow will be insufficient. A plugged or malfunctioning PCV system will eventually damage an engine. PCV problems are primarily due to neglect or poor maintenance, typically engine oil change intervals that are inadequate for the engine's driving conditions. A poorly-maintained engine's PCV system will eventually become contaminated with sludge, causing serious problems. If the engine's lubricating oil is changed with adequate frequency, the PCV system will remain clear practically for the life of the engine. However, since the valve is operating continuously as one operates the vehicle, it will fail over time. Typical maintenance schedules for gasoline engines include PCV valve replacement whenever the air filter or spark plugs are replaced. The long life of the valve despite the harsh operating environment is due to the trace amount of oil droplets suspended in the air that flows through the valve that keep it lubricated.

Read more about this topic:  Crankcase Ventilation System

Famous quotes containing the words components and/or details:

    Hence, a generative grammar must be a system of rules that can iterate to generate an indefinitely large number of structures. This system of rules can be analyzed into the three major components of a generative grammar: the syntactic, phonological, and semantic components.
    Noam Chomsky (b. 1928)

    There was a time when the average reader read a novel simply for the moral he could get out of it, and however naïve that may have been, it was a good deal less naïve than some of the limited objectives he has now. Today novels are considered to be entirely concerned with the social or economic or psychological forces that they will by necessity exhibit, or with those details of daily life that are for the good novelist only means to some deeper end.
    Flannery O’Connor (1925–1964)