Traditional Internal Combustion Engines
Traditional Internal Combustion Engines are designed to optimize efficiency and performance, while minimizing emissions, under a wide variety of driving conditions. The way this is traditionally accomplished is relatively simple: the driver controls the volume of air allowed into the engine by way of a throttle plate linked to the gas pedal. Electronic sensors in the intake stream measure the intake air volume and temperature, and the Powertrain Control Module (PCM) determines the required fuel amount, as well as the appropriate spark timing to allow the air/fuel mixture to burn optimally and maximize output. Generally, fuel volume and spark timing are pulled off a fuel map – a computer program which looks at various inputs from engine sensors. The intake and exhaust valves are fixed, meaning they are driven by the engine crankshaft, and they open and close at set intervals during the rotational cycle, independent of engine load conditions. When an engine is designed, the inherent inflexibility in the timing of the valve events results in a compromise. Simply, engineers must design the engine to run optimally under a wide variety of driving conditions, but perfectly under none. During most driving, the engine is operating at part load and fuel economy is the priority. At part load, the air-fuel ratio is kept stoichiometric to enable efficient operation of the catalytic converter”.
One of the major inefficiencies of the Internal Combustion Engine is the loss of rotational energy caused by the intake stroke. As the piston travels downward during the intake stroke, air is drawn into the cylinder via engine vacuum. The pressure is below atmospheric, which means the engine has to do work to take in the air – at the expense of volumetric efficiency. “These pumping losses depend on the opening and closing of the throttle valve. The losses are high when the throttle valve tends to close and are low at wide open throttle. Thus the pumping losses are inversely proportional with engine load”. If intake air volume were to be controlled by the valvetrain, rather than a throttle plate, the pumping losses could be reduced. “The inlet-valve timing is the most important parameter for optimizing the engine volumetric efficiency, whereas the exhaust-valve timing controls the RGF which reduces exhaust NO emissions. For the engine to operate efficiently and effectively over its entire operating range and conditions, the valve event should be able to vary with speed and load anywhere on the engine map”.
Read more about this topic: Continuous Variable Valve Timing
Famous quotes containing the words traditional, internal, combustion and/or engines:
“What Mrs. Thatcher did for women was to demonstrate that if a woman had enough desire she could do what she wanted, do anything a man could do.... Mrs. Thatcher did not have one traditional feminine cell in her body.”
—Julie Burchill (b. 1960)
“No real vital character in fiction is altogether a conscious construction of the author. On the contrary, it may be a sort of parasitic growth upon the authors personality, developing by internal necessity as much as by external addition.”
—T.S. (Thomas Stearns)
“Him the Almighty Power
Hurld headlong flaming from th Ethereal Skie
With hideous ruine and combustion down
To bottomless perdition, there to dwell
In Adamantine Chains and penal Fire,
Who durst defie th Omnipotent to Arms.
Nine times the Space that measures Day and Night
To mortal men, he with his horrid crew
Lay vanquisht, rowling in the fiery Gulfe”
—John Milton (16081674)
“America is like one of those old-fashioned six-cylinder truck engines that can be missing two sparkplugs and have a broken flywheel and have a crankshaft thats 5000 millimeters off fitting properly, and two bad ball-bearings, and still runs. Were in that kind of situation. We can have substantial parts of the population committing suicide, and still run and look fairly good.”
—Thomas McGuane (b. 1939)