Continuity Correction
In probability theory, if a random variable X has a binomial distribution with parameters n and p, i.e., X is distributed as the number of "successes" in n independent Bernoulli trials with probability p of success on each trial, then
for any x ∈ {0, 1, 2, ... n}. If np and n(1 − p) are large (sometimes taken to mean ≥ 5), then the probability above is fairly well approximated by
where Y is a normally distributed random variable with the same expected value and the same variance as X, i.e., E(Y) = np and var(Y) = np(1 − p). This addition of 1/2 to x is a continuity correction.
A continuity correction can also be applied when other discrete distributions supported on the integers are approximated by the normal distribution. For example, if X has a Poisson distribution with expected value λ then the variance of X is also λ, and
if Y is normally distributed with expectation and variance both λ.
Read more about Continuity Correction: Applications
Famous quotes containing the words continuity and/or correction:
“Every society consists of men in the process of developing from children into parents. To assure continuity of tradition, society must early prepare for parenthood in its children; and it must take care of the unavoidable remnants of infantility in its adults. This is a large order, especially since a society needs many beings who can follow, a few who can lead, and some who can do both, alternately or in different areas of life.”
—Erik H. Erikson (19041994)
“Shakespeare, with an improved education and in a more enlightened age, might easily have attained the purity and correction of Racine; but nothing leads one to suppose that Racine in a barbarous age would have attained the grandeur, force and nature of Shakespeare.”
—Horace Walpole (17171797)