Computational Resources
In computational complexity theory, a computational resource is a resource used by some computational models in the solution of computational problems.
The simplest computational resources are computation time, the number of steps necessary to solve a problem, and memory space, the amount of storage needed while solving the problem, but many more complicated resources have been defined.
A computational problem is generally defined in terms of its action on any valid input. Examples of problems might be "given an integer n, determine whether n is prime", or "given two numbers x and y, calculate the product x*y". As the inputs get bigger, the amount of computational resources needed to solve a problem will increase. Thus, the resources needed to solve a problem are described in terms of asymptotic analysis, by identifying the resources as a function of the length or size of the input.
Computational resources are useful because we can study which problems can be computed in a certain amount of each computational resource. In this way, we can determine whether algorithms for solving the problem are optimal and we can make statements about an algorithm's efficiency. The set of all of the computational problems that can be solved using a certain amount of a certain computational resource is a complexity class, and relationships between different complexity classes are one of the most important topics in complexity theory.
Read more about Computational Resources: Describing Generally Accessible Computing Equipment, Formal Quantification of Computing Capability
Famous quotes containing the word resources:
“Somehow we have been taught to believe that the experiences of girls and women are not important in the study and understanding of human behavior. If we know men, then we know all of humankind. These prevalent cultural attitudes totally deny the uniqueness of the female experience, limiting the development of girls and women and depriving a needy world of the gifts, talents, and resources our daughters have to offer.”
—Jeanne Elium (20th century)