Computational Resource

In computational complexity theory, a computational resource is a resource used by some computational models in the solution of computational problems.

The simplest computational resources are computation time, the number of steps necessary to solve a problem, and memory space, the amount of storage needed while solving the problem, but many more complicated resources have been defined.

A computational problem is generally defined in terms of its action on any valid input. Examples of problems might be "given an integer n, determine whether n is prime", or "given two numbers x and y, calculate the product x*y". As the inputs get bigger, the amount of computational resources needed to solve a problem will increase. Thus, the resources needed to solve a problem are described in terms of asymptotic analysis, by identifying the resources as a function of the length or size of the input.

Computational resources are useful because we can study which problems can be computed in a certain amount of each computational resource. In this way, we can determine whether algorithms for solving the problem are optimal and we can make statements about an algorithm's efficiency. The set of all of the computational problems that can be solved using a certain amount of a certain computational resource is a complexity class, and relationships between different complexity classes are one of the most important topics in complexity theory.

Read more about Computational Resource:  Describing Generally Accessible Computing Equipment, Formal Quantification of Computing Capability

Famous quotes containing the word resource:

    Helping children at a level of genuine intellectual inquiry takes imagination on the part of the adult. Even more, it takes the courage to become a resource in unfamiliar areas of knowledge and in ones for which one has no taste. But parents, no less than teachers, must respect a child’s mind and not exploit it for their own vanity or ambition, or to soothe their own anxiety.
    Dorothy H. Cohen (20th century)