Complex Measure - Integration in Respect To A Complex Measure

Integration in Respect To A Complex Measure

One can define the integral of a complex-valued measurable function with respect to a complex measure in the same way as the Lebesgue integral of a real-valued measurable function with respect to a non-negative measure, by approximating a measurable function with simple functions. Just as in the case of ordinary integration, this more general integral might fail to exist, or its value might be infinite (the complex infinity).

Another approach is to not develop a theory of integration from scratch, but rather use the already available concept of integral of a real-valued function with respect to a non-negative measure. To that end, it is a quick check that the real and imaginary parts μ1 and μ2 of a complex measure μ are finite-valued signed measures. One can apply the Hahn-Jordan decomposition to these measures to split them as

and

where μ1+, μ1-, μ2+, μ2- are finite-valued non-negative measures (unique in some sense). Then, for a measurable function f which is real-valued for the moment, one can define

as long as the expression on the right-hand side is defined, that is, all four integrals exist and when adding them up one does not encounter the indeterminate ∞−∞.

Given now a complex-valued measurable function, one can integrate its real and imaginary components separately as illustrated above and define, as expected,

Read more about this topic:  Complex Measure

Famous quotes containing the words integration, respect, complex and/or measure:

    Look back, to slavery, to suffrage, to integration and one thing is clear. Fashions in bigotry come and go. The right thing lasts.
    Anna Quindlen (b. 1952)

    Much of the pressure contemporary parents feel with respect to dressing children in designer clothes, teaching young children academics, and giving them instruction in sports derives directly from our need to use our children to impress others with our economic surplus. We find “good” rather than real reasons for letting our children go along with the crowd.
    David Elkind (20th century)

    Specialization is a feature of every complex organization, be it social or natural, a school system, garden, book, or mammalian body.
    Catharine R. Stimpson (b. 1936)

    Might was the measure of right.
    Marcus Annaeus Lucan (39–65)