Complex Conjugate Vector Space
In mathematics, the (formal) complex conjugate of a complex vector space is the complex vector space consisting of all formal complex conjugates of elements of . That is, is a vector space whose elements are in one-to-one correspondence with the elements of :
with the following rules for addition and scalar multiplication:
Here and are vectors in, is a complex number, and denotes the complex conjugate of .
More concretely, the complex conjugate vector space is the same underlying real vector space (same set of points, same vector addition and real scalar multiplication) with the conjugate linear complex structure J (different multiplication by i).
In the case where is a linear subspace of, the formal complex conjugate is naturally isomorphic to the actual complex conjugate subspace of in .
Read more about Complex Conjugate Vector Space: Antilinear Maps, Conjugate Linear Maps, Structure of The Conjugate, Complex Conjugate of A Hilbert Space
Famous quotes containing the words complex and/or space:
“It would be naive to think that peace and justice can be achieved easily. No set of rules or study of history will automatically resolve the problems.... However, with faith and perseverance,... complex problems in the past have been resolved in our search for justice and peace. They can be resolved in the future, provided, of course, that we can think of five new ways to measure the height of a tall building by using a barometer.”
—Jimmy Carter (James Earl Carter, Jr.)
“Not so many years ago there there was no simpler or more intelligible notion than that of going on a journey. Travelmovement through spaceprovided the universal metaphor for change.... One of the subtle confusionsperhaps one of the secret terrorsof modern life is that we have lost this refuge. No longer do we move through space as we once did.”
—Daniel J. Boorstin (b. 1914)