Complete Partial Order - Continuous Functions and Fixpoints

Continuous Functions and Fixpoints

A function f between two dcpos P and Q is called (Scott) continuous if it maps directed sets to directed sets while preserving their suprema:

  • is directed for every directed .
  • for every directed .

Note that every continuous function between dcpos is a monotone function. This notion of continuity is equivalent to the topological continuity induced by the Scott topology.

The set of all continuous functions between two dcpos P and Q is denoted . Equipped with the pointwise order, this is again a dcpo, and a cpo whenever Q is a cpo. Thus the complete partial orders with Scott continuous maps form a cartesian closed category.

Every order-preserving self-map f of a cpo (P, ⊥) has a least fixpoint. If f is continuous then this fixpoint is equal to the supremum of the iterates (⊥, f(⊥), f(f(⊥)), … fn(⊥), …) of ⊥ (see also the Kleene fixpoint theorem).

Read more about this topic:  Complete Partial Order

Famous quotes containing the words continuous and/or functions:

    Perhaps when distant people on other planets pick up some wave-length of ours all they hear is a continuous scream.
    Iris Murdoch (b. 1919)

    Let us stop being afraid. Of our own thoughts, our own minds. Of madness, our own or others’. Stop being afraid of the mind itself, its astonishing functions and fandangos, its complications and simplifications, the wonderful operation of its machinery—more wonderful because it is not machinery at all or predictable.
    Kate Millett (b. 1934)