Complete Intersection

In mathematics, an algebraic variety V in projective space is a complete intersection if it can be defined by the vanishing of the number of homogeneous polynomials indicated by its codimension. That is, if the dimension of an algebraic variety V is m and it lies in projective space Pn, there are homogeneous polynomials

Fi(X0, ..., Xn)

in the homogeneous coordinates Xj, with

1 ≤ inm,

such that on V we have

Fi(X0, ..., Xn) = 0

and for no other points of projective space do all the Fi all take the value 0. Geometrically each Fi separately define a hypersurface Hi; the intersection of the Hi should be V, no more and no less.

In fact the dimension of the intersection will always be at least m, assuming as usual in algebraic geometry that the scalars form an algebraically closed field, such as the complex numbers. There will be hypersurfaces containing V, and any set of them will have intersection containing V. The question is then, can nm be chosen to have no further intersection? This condition is in fact hard to satisfy, as soon as n ≥ 3 and nm ≥ 2. When the codimension nm = 1 then automatically V is a hypersurface and there is nothing to prove.

Read more about Complete Intersection:  Example of A Space Curve That Is Not A Complete Intersection, Multidegree, General Position, A Connection To Number Theory

Famous quotes containing the words complete and/or intersection:

    I see advertisements for active young men, as if activity were the whole of a young man’s capital. Yet I have been surprised when one has with confidence proposed to me, a grown man, to embark in some enterprise of his, as if I had absolutely nothing to do, my life having been a complete failure hitherto. What a doubtful compliment this to pay me!
    Henry David Thoreau (1817–1862)

    If we are a metaphor of the universe, the human couple is the metaphor par excellence, the point of intersection of all forces and the seed of all forms. The couple is time recaptured, the return to the time before time.
    Octavio Paz (b. 1914)