Chirality of Compounds With A Stereogenic "lone Pair"
When a nonbonding pair of electrons, a lone pair, occupies space, chirality can result. The effect is pervasive in certain amines, phosphines, sulfonium and oxonium ions, sulfoxides, and even carbanions. The main requirement is that aside from the lone pair, the other three substituents differ mutually. Chiral phosphine ligands are useful in asymmetric synthesis.
Chiral amines (see images) are special in the sense that the enantiomers can rarely be separated. The energy barrier for nitrogen inversion of the stereocenter is generally about 30 kJ/mol, which means that the two stereoisomers rapidly interconvert at room temperature. As a result, such chiral amines cannot be resolved into individual enantiomers unless some of the substituents are constrained in cyclic structures as in Tröger's base.
Read more about this topic: Chirality (chemistry)
Famous quotes containing the words compounds, lone and/or pair:
“We can come up with a working definition of life, which is what we did for the Viking mission to Mars. We said we could think in terms of a large molecule made up of carbon compounds that can replicate, or make copies of itself, and metabolize food and energy. So thats the thought: macrocolecule, metabolism, replication.”
—Cyril Ponnamperuma (b. 1923)
“As a lone ant from a broken ant-hill
from the wreckage of Europe, ego scriptor.”
—Ezra Pound (18851972)
“With two sons born eighteen months apart, I operated mainly on automatic pilot through the ceaseless activity of their early childhood. I remember opening the refrigerator late one night and finding a roll of aluminum foil next to a pair of small red tennies. Certain that I was responsible for the refrigerated shoes, I quickly closed the door and ran upstairs to make sure I had put the babies in their cribs instead of the linen closet.”
—Mary Kay Blakely (20th century)