Properties
- Characters are class functions, that is, they each take a constant value on a given conjugacy class. More precisely, the set of irreducible characters of a given group G into a field K form a basis of the K-vector space of all class functions G → K.
- Isomorphic representations have the same characters. Over a field of characteristic 0, representations are isomorphic if and only if they have the same character.
- If a representation is the direct sum of subrepresentations, then the corresponding character is the sum of the characters of those subrepresentations.
- If a character of the finite group G is restricted to a subgroup H, then the result is also a character of H.
- Every character value χ(g) is a sum of n mth roots of unity, where n is the degree (that is, the dimension of the associated vector space) of the representation with character χ and m is the order of g. In particular, when F is the field of complex numbers, every such character value is an algebraic integer.
- If F is the field of complex numbers, and χ is irreducible, then is an algebraic integer for each x in G.
- If F is algebraically closed and char(F) does not divide |G|, then the number of irreducible characters of G is equal to the number of conjugacy classes of G. Furthermore, in this case, the degrees of the irreducible characters are divisors of the order of G (and they even divide the index of the center of G in G if F = C).
Read more about this topic: Character Theory
Famous quotes containing the word properties:
“The reason why men enter into society, is the preservation of their property; and the end why they choose and authorize a legislative, is, that there may be laws made, and rules set, as guards and fences to the properties of all the members of the society: to limit the power, and moderate the dominion, of every part and member of the society.”
—John Locke (16321704)
“A drop of water has the properties of the sea, but cannot exhibit a storm. There is beauty of a concert, as well as of a flute; strength of a host, as well as of a hero.”
—Ralph Waldo Emerson (18031882)
Related Phrases
Related Words