Definitions
Let V be a finite-dimensional vector space over a field F and let ρ: G → GL(V) be a representation of a group G on V. The character of ρ is the function χρ: G → F given by
where Tr is the trace.
A character χρ is called irreducible if ρ is an irreducible representation. It is called linear if the dimension of ρ is 1. When G is finite and F has characteristic zero, the kernel of the character χρ is the normal subgroup:, which is precisely the kernel of the representation ρ.
Read more about this topic: Character Theory
Famous quotes containing the word definitions:
“What I do not like about our definitions of genius is that there is in them nothing of the day of judgment, nothing of resounding through eternity and nothing of the footsteps of the Almighty.”
—G.C. (Georg Christoph)
“Lord Byron is an exceedingly interesting person, and as such is it not to be regretted that he is a slave to the vilest and most vulgar prejudices, and as mad as the winds?
There have been many definitions of beauty in art. What is it? Beauty is what the untrained eyes consider abominable.”
—Edmond De Goncourt (18221896)
“The loosening, for some people, of rigid role definitions for men and women has shown that dads can be great at calming babiesif they take the time and make the effort to learn how. Its that time and effort that not only teaches the dad how to calm the babies, but also turns him into a parent, just as the time and effort the mother puts into the babies turns her into a parent.”
—Pamela Patrick Novotny (20th century)