Change of Basis - Important Instances

Important Instances

In abstract vector space theory the change of basis concept is innocuous; it seems to add little to science. Yet there are cases in associative algebras where a change of basis is sufficient to turn a caterpillar into a butterfly, figuratively speaking:

  • In the split-complex number plane there is an alternative “diagonal basis”. The standard hyperbola xxyy = 1 becomes xy = 1 after the change of basis. Transformations of the plane that leave the hyperbolae in place correspond to each other, modulo a change of basis. The contextual difference is profound enough to then separate Lorentz boost from squeeze mapping. A panoramic view of the literature of these mappings can be taken using the underlying change of basis.
  • With the 2 × 2 real matrices one finds the beginning of a catalogue of linear algebras due to Arthur Cayley. His associate James Cockle put forward in 1849 his algebra of coquaternions or split-quaternions, which are the same algebra as the 2 × 2 real matrices, just laid out on a different matrix basis. Once again it is the concept of change of basis that synthesizes Cayley’s matrix algebra and Cockle’s coquaternions.
  • A change of basis turns a 2 × 2 complex matrix into a biquaternion.

Read more about this topic:  Change Of Basis

Famous quotes containing the words important and/or instances:

    Unexplained, obscure matters are regarded as more important than explained, clear ones.
    Friedrich Nietzsche (1844–1900)

    There are few instances of the exercise of particular virtues which seem harder to attain to, or which appear more amiable and engaging in themselves, than those of moderation and the forgiveness of injuries.
    Laurence Sterne (1713–1768)