Equivalent Categories
It is a natural question to ask: under which conditions can two categories be considered to be "essentially the same", in the sense that theorems about one category can readily be transformed into theorems about the other category? The major tool one employs to describe such a situation is called equivalence of categories, which is given by appropriate functors between two categories. Categorical equivalence has found numerous applications in mathematics.
Read more about this topic: Category Theory
Famous quotes containing the words equivalent and/or categories:
“Perhaps basketball and poetry have just a few things in common, but the most important is the possibility of transcendence. The opposite is labor. In writing, every writer knows when he or she is laboring to achieve an effect. You want to get from here to there, but find yourself willing it, forcing it. The equivalent in basketball is aiming your shot, a kind of strained and usually ineffective purposefulness. What you want is to be in some kind of flow, each next moment a discovery.”
—Stephen Dunn (b. 1939)
“Of course Im a black writer.... Im not just a black writer, but categories like black writer, woman writer and Latin American writer arent marginal anymore. We have to acknowledge that the thing we call literature is more pluralistic now, just as society ought to be. The melting pot never worked. We ought to be able to accept on equal terms everybody from the Hassidim to Walter Lippmann, from the Rastafarians to Ralph Bunche.”
—Toni Morrison (b. 1931)