Bruhat Decomposition - Examples

Examples

Let G be the general linear group GLn of invertible matrices with entries in some algebraically closed field, which is a reductive group. Then the Weyl group W is isomorphic to the symmetric group Sn on n letters, with permutation matrices as representatives. In this case, we can take B to be the subgroup of upper triangular invertible matrices, so Bruhat decomposition says that one can write any invertible matrix A as a product U1PU2 where U1 and U2 are upper triangular, and P is a permutation matrix. Writing this as P = U1-1AU2-1, this says that any invertible matrix can be transformed into a permutation matrix via a series of row and column operations, where we are only allowed to add row i (resp. column i) to row j (resp. column j) if i>j (resp. i). The row operations correspond to U1-1, and the column operations correspond to U2-1.

The special linear group SLn of invertible matrices with determinant 1 is a semisimple group, and hence reductive. In this case, W is still isomorphic to the symmetric group Sn. However, the determinant of a permutation matrix is the sign of the permutation, so to represent an odd permutation in SLn, we can take one of the nonzero elements to be -1 instead of 1. Here B is the subgroup of upper triangular matrices with determinant 1, so the interpretation of Bruhat decomposition in this case is similar to the case of GLn.

Read more about this topic:  Bruhat Decomposition

Famous quotes containing the word examples:

    In the examples that I here bring in of what I have [read], heard, done or said, I have refrained from daring to alter even the smallest and most indifferent circumstances. My conscience falsifies not an iota; for my knowledge I cannot answer.
    Michel de Montaigne (1533–1592)

    It is hardly to be believed how spiritual reflections when mixed with a little physics can hold people’s attention and give them a livelier idea of God than do the often ill-applied examples of his wrath.
    —G.C. (Georg Christoph)

    Histories are more full of examples of the fidelity of dogs than of friends.
    Alexander Pope (1688–1744)