Brainbow - History & Development

History & Development

The Brainbow neuroimaging technique was initially developed by a team of researchers in the Department of Neurobiology at Harvard Medical School in 2007. This particular group of scientists was led by professors Jeff W. Lichtman and Joshua R. Sanes, both of whom specialize in Molecular and Cellular Biology and are highly renowned for their work. The team constructed Brainbow using a two-step process: first, a specific genetic construct was generated that could be recombined in multiple arrangements to produce one of either three or four colors based on the particular fluorescent proteins (XFPs) being implemented. Next, multiple copies of the same transgenic construct were inserted into the genome of the target species, resulting in the random expression of different XFP ratios and subsequently causing different cells to exhibit a variety of colorful hues.

Brainbow was originally created as an improvement over more traditional neuroimaging techniques, such as Golgi staining and dye injection, both of which presented severe limitations to researchers in their ability to visualize the intricate architecture of neural circuitry in the brain. While older techniques were only able to stain cells with a constricted range of colors, often utilizing bi- and tri-color transgenic mice to unveil limited information in regards to neuronal structures, Brainbow is much more flexible in that it has the capacity to fluorescently label individual neurons with up to approximately 100 different hues so that scientists can identify and even differentiate between dendritic and axonal processes. By revealing such detailed information about neuronal connectivity and patterns, sometimes even in vivo, scientists are often able to infer information regarding neuronal interactions and their subsequent impact upon behavior and function. Thus, Brainbow filled the void left by previous neuroimaging methods.

With the recent advent of Brainbow in neuroscience, researchers are now able to construct specific maps of neural circuits and better investigate how these relate to various mental activities and their connected behaviors (i.e. Brainbow reveals information about the interconnections between neurons and their subsequent interactions that affect overall brain functionality). As a further extrapolation of this method, Brainbow can therefore also be used to study both neurological and psychological disorders by analyzing differences in neural maps.

Read more about this topic:  Brainbow

Famous quotes containing the words history and/or development:

    We aspire to be something more than stupid and timid chattels, pretending to read history and our Bibles, but desecrating every house and every day we breathe in.
    Henry David Thoreau (1817–1862)

    I hope I may claim in the present work to have made it probable that the laws of arithmetic are analytic judgments and consequently a priori. Arithmetic thus becomes simply a development of logic, and every proposition of arithmetic a law of logic, albeit a derivative one. To apply arithmetic in the physical sciences is to bring logic to bear on observed facts; calculation becomes deduction.
    Gottlob Frege (1848–1925)