Bootstrapping (statistics) - Deriving Confidence Intervals From The Bootstrap Distribution

Deriving Confidence Intervals From The Bootstrap Distribution

The bootstrap distribution of a parameter-estimator has been used to calculate confidence intervals for its population-parameter.

Read more about this topic:  Bootstrapping (statistics)

Famous quotes containing the words deriving, confidence, intervals and/or distribution:

    Today’s pressures on middle-class children to grow up fast begin in early childhood. Chief among them is the pressure for early intellectual attainment, deriving from a changed perception of precocity. Several decades ago precocity was looked upon with great suspicion. The child prodigy, it was thought, turned out to be a neurotic adult; thus the phrase “early ripe, early rot!”
    David Elkind (20th century)

    The nation looked upon him as a deserter, and he shrunk into insignificancy and an earldom.... He was fixed in the house of lords, that hospital of incurables, and his retreat to popularity was cut off; for the confidence of the public, when once great and once lost, is never to be regained.
    Philip Dormer Stanhope, 4th Earl Chesterfield (1694–1773)

    It can be demonstrated that the child’s contact with the real world is strengthened by his periodic excursions into fantasy. It becomes easier to tolerate the frustrations of the real world and to accede to the demands of reality if one can restore himself at intervals in a world where the deepest wishes can achieve imaginary gratification.
    Selma H. Fraiberg (20th century)

    The man who pretends that the distribution of income in this country reflects the distribution of ability or character is an ignoramus. The man who says that it could by any possible political device be made to do so is an unpractical visionary. But the man who says that it ought to do so is something worse than an ignoramous and more disastrous than a visionary: he is, in the profoundest Scriptural sense of the word, a fool.
    George Bernard Shaw (1856–1950)