Relation To The Born Rule
In Bohm's original papers, he discusses how de Broglie–Bohm theory results in the usual measurement results of quantum mechanics. The main idea is that this is true if the positions of the particles satisfy the statistical distribution given by . And that distribution is guaranteed to be true for all time by the guiding equation if the initial distribution of the particles satisfies .
For a given experiment, we can postulate this as being true and verify experimentally that it does indeed hold true, as it does. But, as argued in Dürr et al., one needs to argue that this distribution for subsystems is typical. They argue that by virtue of its equivariance under the dynamical evolution of the system, is the appropriate measure of typicality for initial conditions of the positions of the particles. They then prove that the vast majority of possible initial configurations will give rise to statistics obeying the Born rule (i.e., ) for measurement outcomes. In summary, in a universe governed by the de Broglie–Bohm dynamics, Born rule behavior is typical.
The situation is thus analogous to the situation in classical statistical physics. A low entropy initial condition will, with overwhelmingly high probability, evolve into a higher entropy state: behavior consistent with the second law of thermodynamics is typical. There are, of course, anomalous initial conditions which would give rise to violations of the second law. However, absent some very detailed evidence supporting the actual realization of one of those special initial conditions, it would be quite unreasonable to expect anything but the actually observed uniform increase of entropy. Similarly, in the de Broglie–Bohm theory, there are anomalous initial conditions which would produce measurement statistics in violation of the Born rule (i.e., in conflict with the predictions of standard quantum theory). But the typicality theorem shows that, absent some particular reason to believe one of those special initial conditions was in fact realized, Born rule behavior is what one should expect.
It is in that qualified sense that Born rule is, for the de Broglie–Bohm theory, a theorem rather than (as in ordinary quantum theory) an additional postulate.
It can also be shown that a distribution of particles that is not distributed according to the Born rule (that is, a distribution 'out of quantum equilibrium') and evolving under the de Broglie-Bohm dynamics is overwhelmingly likely to evolve dynamically into a state distributed as . See, for example Ref. . A pretty video of the electron density in a 2D box evolving under this process is available here.
Read more about this topic: Bohmian, The Theory
Famous quotes containing the words relation to the, relation to, relation, born and/or rule:
“Unaware of the absurdity of it, we introduce our own petty household rules into the economy of the universe for which the life of generations, peoples, of entire planets, has no importance in relation to the general development.”
—Alexander Herzen (18121870)
“Only in a house where one has learnt to be lonely does one have this solicitude for things. Ones relation to them, the daily seeing or touching, begins to become love, and to lay one open to pain.”
—Elizabeth Bowen (18991973)
“Skepticism is unbelief in cause and effect. A man does not see, that, as he eats, so he thinks: as he deals, so he is, and so he appears; he does not see that his son is the son of his thoughts and of his actions; that fortunes are not exceptions but fruits; that relation and connection are not somewhere and sometimes, but everywhere and always; no miscellany, no exemption, no anomaly,but method, and an even web; and what comes out, that was put in.”
—Ralph Waldo Emerson (18031882)
“And born hym weel, as of so litel space,
In hope to stonden in his lady grace.
Embrouded was he, as it were a meede
Al ful of fresshe floures, whyte and reede.
Syngynge he was or floytynge al the day.
He was as fressh as in the monthe of May.”
—Geoffrey Chaucer (1340?1400)
“While Michael Angelos Sistine roof,
His Morning and his Night disclose
How sinew that has been pulled tight,
Or it may be loosened in repose,
Can rule by supernatural right
Yet be but sinew.”
—William Butler Yeats (18651939)