Bohmian - The Theory - Relation To The Born Rule

Relation To The Born Rule

In Bohm's original papers, he discusses how de Broglie–Bohm theory results in the usual measurement results of quantum mechanics. The main idea is that this is true if the positions of the particles satisfy the statistical distribution given by . And that distribution is guaranteed to be true for all time by the guiding equation if the initial distribution of the particles satisfies .

For a given experiment, we can postulate this as being true and verify experimentally that it does indeed hold true, as it does. But, as argued in Dürr et al., one needs to argue that this distribution for subsystems is typical. They argue that by virtue of its equivariance under the dynamical evolution of the system, is the appropriate measure of typicality for initial conditions of the positions of the particles. They then prove that the vast majority of possible initial configurations will give rise to statistics obeying the Born rule (i.e., ) for measurement outcomes. In summary, in a universe governed by the de Broglie–Bohm dynamics, Born rule behavior is typical.

The situation is thus analogous to the situation in classical statistical physics. A low entropy initial condition will, with overwhelmingly high probability, evolve into a higher entropy state: behavior consistent with the second law of thermodynamics is typical. There are, of course, anomalous initial conditions which would give rise to violations of the second law. However, absent some very detailed evidence supporting the actual realization of one of those special initial conditions, it would be quite unreasonable to expect anything but the actually observed uniform increase of entropy. Similarly, in the de Broglie–Bohm theory, there are anomalous initial conditions which would produce measurement statistics in violation of the Born rule (i.e., in conflict with the predictions of standard quantum theory). But the typicality theorem shows that, absent some particular reason to believe one of those special initial conditions was in fact realized, Born rule behavior is what one should expect.

It is in that qualified sense that Born rule is, for the de Broglie–Bohm theory, a theorem rather than (as in ordinary quantum theory) an additional postulate.

It can also be shown that a distribution of particles that is not distributed according to the Born rule (that is, a distribution 'out of quantum equilibrium') and evolving under the de Broglie-Bohm dynamics is overwhelmingly likely to evolve dynamically into a state distributed as . See, for example Ref. . A pretty video of the electron density in a 2D box evolving under this process is available here.

Read more about this topic:  Bohmian, The Theory

Famous quotes containing the words relation to the, relation to, relation, born and/or rule:

    Only in a house where one has learnt to be lonely does one have this solicitude for things. One’s relation to them, the daily seeing or touching, begins to become love, and to lay one open to pain.
    Elizabeth Bowen (1899–1973)

    The proper study of mankind is man in his relation to his deity.
    —D.H. (David Herbert)

    There is undoubtedly something religious about it: everyone believes that they are special, that they are chosen, that they have a special relation with fate. Here is the test: you turn over card after card to see in which way that is true. If you can defy the odds, you may be saved. And when you are cleaned out, the last penny gone, you are enlightened at last, free perhaps, exhilarated like an ascetic by the falling away of the material world.
    Andrei Codrescu (b. 1947)

    The time is out of joint—O cursed spite,
    That ever I was born to set it right!
    William Shakespeare (1564–1616)

    When any practice has become the fixed rule of the society in which we live, it is always wise to adhere to that rule, unless it call upon us to do something that is actually wrong. One should not offend the prejudices of the world, even if one is quite sure that they are prejudices.
    Anthony Trollope (1815–1882)